Home
Class 12
MATHS
lim(x to infty)[sqrt(x^(2) + ax + a^(2))...

`lim_(x to infty)[sqrt(x^(2) + ax + a^(2)) - sqrt(x^(2) + a^(2))]` is equal to `a/2`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem \( \lim_{x \to \infty} \left[ \sqrt{x^2 + ax + a^2} - \sqrt{x^2 + a^2} \right] \) and show that it equals \( \frac{a}{2} \), we will follow these steps: ### Step 1: Rationalization We start by rationalizing the expression. We multiply and divide by the conjugate of the expression: \[ L = \lim_{x \to \infty} \left[ \sqrt{x^2 + ax + a^2} - \sqrt{x^2 + a^2} \right] \cdot \frac{\sqrt{x^2 + ax + a^2} + \sqrt{x^2 + a^2}}{\sqrt{x^2 + ax + a^2} + \sqrt{x^2 + a^2}} \] ### Step 2: Simplifying the Numerator Using the difference of squares, the numerator simplifies as follows: \[ L = \lim_{x \to \infty} \frac{(x^2 + ax + a^2) - (x^2 + a^2)}{\sqrt{x^2 + ax + a^2} + \sqrt{x^2 + a^2}} \] This simplifies to: \[ L = \lim_{x \to \infty} \frac{ax}{\sqrt{x^2 + ax + a^2} + \sqrt{x^2 + a^2}} \] ### Step 3: Factor Out \( x^2 \) in the Denominator Next, we will factor out \( x^2 \) from the square roots in the denominator: \[ L = \lim_{x \to \infty} \frac{ax}{\sqrt{x^2(1 + \frac{a}{x} + \frac{a^2}{x^2})} + \sqrt{x^2(1 + \frac{a^2}{x^2})}} \] This can be rewritten as: \[ L = \lim_{x \to \infty} \frac{ax}{x\left(\sqrt{1 + \frac{a}{x} + \frac{a^2}{x^2}} + \sqrt{1 + \frac{a^2}{x^2}}\right)} \] ### Step 4: Cancel \( x \) in the Numerator and Denominator Now, we can cancel \( x \) from the numerator and denominator: \[ L = \lim_{x \to \infty} \frac{a}{\sqrt{1 + \frac{a}{x} + \frac{a^2}{x^2}} + \sqrt{1 + \frac{a^2}{x^2}}} \] ### Step 5: Evaluate the Limit As \( x \to \infty \), \( \frac{a}{x} \) and \( \frac{a^2}{x^2} \) both approach 0. Thus, we have: \[ L = \frac{a}{\sqrt{1 + 0 + 0} + \sqrt{1 + 0}} = \frac{a}{1 + 1} = \frac{a}{2} \] ### Conclusion Thus, we have shown that: \[ \lim_{x \to \infty} \left[ \sqrt{x^2 + ax + a^2} - \sqrt{x^2 + a^2} \right] = \frac{a}{2} \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (1) (FILL IN THE BLANKS) |7 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise PROBLEM SET (2) (MULTIPLE CHOICE QUESTIONS) |133 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (ASSERTION/ REASONS) |3 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos
  • LINEAR PROGRAMMING

    ML KHANNA|Exercise Self Assessment Test|8 Videos

Similar Questions

Explore conceptually related problems

lim_(x->\infty)sqrt(x^(2)+1)/(x+1)

lim_(x to 0) (sqrt(1 + x + x^(2)) - sqrt(x + 1))/(2X^(2)) is equal to

lim_(x to 4) (x^(2) - 16)/(sqrt(x) - 2) is equal to

lim_(x to 2) (x - 2)/(sqrt(x) - sqrt(2)) is equal to