Home
Class 12
MATHS
If m and n are integers , then int0^pi s...

If m and n are integers , then `int_0^pi sin mx sin nx dx = 0` , if `m != n` and `pi` if `m = n` .

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_0^{\pi} \sin(mx) \sin(nx) \, dx \), we will analyze two cases: when \( m \neq n \) and when \( m = n \). ### Step 1: Use the Product-to-Sum Formula We can use the product-to-sum identities for sine functions: \[ \sin A \sin B = \frac{1}{2} [\cos(A - B) - \cos(A + B)] \] Applying this to our integral, we have: \[ \sin(mx) \sin(nx) = \frac{1}{2} [\cos((m-n)x) - \cos((m+n)x)] \] Thus, the integral becomes: \[ I = \int_0^{\pi} \sin(mx) \sin(nx) \, dx = \frac{1}{2} \int_0^{\pi} [\cos((m-n)x) - \cos((m+n)x)] \, dx \] ### Step 2: Evaluate the Integral Now, we can evaluate the integral: \[ I = \frac{1}{2} \left( \int_0^{\pi} \cos((m-n)x) \, dx - \int_0^{\pi} \cos((m+n)x) \, dx \right) \] ### Step 3: Integrate Each Cosine Term 1. For \( \int_0^{\pi} \cos((m-n)x) \, dx \): - If \( m \neq n \): \[ \int_0^{\pi} \cos((m-n)x) \, dx = \left[ \frac{\sin((m-n)x)}{m-n} \right]_0^{\pi} = \frac{\sin((m-n)\pi)}{m-n} - \frac{\sin(0)}{m-n} = 0 \] - If \( m = n \): \[ \int_0^{\pi} \cos(0) \, dx = \int_0^{\pi} 1 \, dx = \pi \] 2. For \( \int_0^{\pi} \cos((m+n)x) \, dx \): - Regardless of \( m \) and \( n \): \[ \int_0^{\pi} \cos((m+n)x) \, dx = \left[ \frac{\sin((m+n)x)}{m+n} \right]_0^{\pi} = \frac{\sin((m+n)\pi)}{m+n} - \frac{\sin(0)}{m+n} = 0 \] ### Step 4: Combine Results Combining these results, we find: - If \( m \neq n \): \[ I = \frac{1}{2} (0 - 0) = 0 \] - If \( m = n \): \[ I = \frac{1}{2} (\pi - 0) = \frac{\pi}{2} \] ### Conclusion Thus, we conclude: - \( I = 0 \) if \( m \neq n \) - \( I = \frac{\pi}{2} \) if \( m = n \) ### Final Result Therefore, the final result is: \[ \int_0^{\pi} \sin(mx) \sin(nx) \, dx = \begin{cases} 0 & \text{if } m \neq n \\ \frac{\pi}{2} & \text{if } m = n \end{cases} \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|1 Videos
  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (2)(MULTIPLE CHOICE QUESTIONS)|80 Videos
  • INTEGRATION

    ML KHANNA|Exercise SELF ASSESSMENT TESET|10 Videos
  • INEQUALITIES

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|4 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos

Similar Questions

Explore conceptually related problems

If n is an integer, then int_(0)^(pi)(sin 2nx)/(sin x)dx=

IF m and n are integers then what is the value of int_0^pi sin mx sin nx dx if m ne n

If m!=n where m,n are positive integers,then int sin mx sin nxdx=

If m and n are integers , then what is the value of int_(0)^(pi)" sin mxsinnx dx " , if m ne n ?

int sin mx cos nxdx,m!=n

If m and n are positive integers and m!=n show (i) int_(0)^(2 pi)sin mx sin nxdx=0 (ii) int_(0)^( pi)cos mx cos nxdx=0 (iii) int_(0)^( pi)cos^(m)x

Integrate: int sin mx cos nxdx,m!=n

If m ne n , m n in N then the value of int_(0)^(2pi) cos mx cos nx dx is

Let m be any integer. Then, the integral int_(0)^(pi) (sin 2m x)/(sin x)dx equals