Home
Class 12
MATHS
If Sn = int0^(pi//2) (sin (2n - 1)x)/(si...

If `S_n = int_0^(pi//2) (sin (2n - 1)x)/(sin x) dx`,
`V_n = int_0^(pi//2) ((sin nx)/(sin x))^2 dx`
and `n` is an integer , then
`S_(n + 1) - S_n = 0, V_(n + 1) - V_n = S_(n + 1)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to prove the two statements given: 1. \( S_{n+1} - S_n = 0 \) 2. \( V_{n+1} - V_n = S_{n+1} \) Let's break down the solution step by step. ### Step 1: Evaluate \( S_{n+1} - S_n \) We start with the definition of \( S_n \): \[ S_n = \int_0^{\frac{\pi}{2}} \frac{\sin((2n - 1)x)}{\sin x} \, dx \] Now, we evaluate \( S_{n+1} \): \[ S_{n+1} = \int_0^{\frac{\pi}{2}} \frac{\sin((2(n + 1) - 1)x)}{\sin x} \, dx = \int_0^{\frac{\pi}{2}} \frac{\sin((2n + 1)x)}{\sin x} \, dx \] Now, we compute \( S_{n+1} - S_n \): \[ S_{n+1} - S_n = \int_0^{\frac{\pi}{2}} \left( \frac{\sin((2n + 1)x)}{\sin x} - \frac{\sin((2n - 1)x)}{\sin x} \right) \, dx \] This can be simplified to: \[ S_{n+1} - S_n = \int_0^{\frac{\pi}{2}} \frac{\sin((2n + 1)x) - \sin((2n - 1)x)}{\sin x} \, dx \] Using the sine subtraction formula: \[ \sin A - \sin B = 2 \cos\left(\frac{A + B}{2}\right) \sin\left(\frac{A - B}{2}\right) \] Let \( A = (2n + 1)x \) and \( B = (2n - 1)x \), then: \[ A + B = (4n)x \quad \text{and} \quad A - B = 2x \] Thus, we have: \[ \sin((2n + 1)x) - \sin((2n - 1)x) = 2 \cos(2nx) \sin(x) \] Substituting this back into the integral gives: \[ S_{n+1} - S_n = \int_0^{\frac{\pi}{2}} \frac{2 \cos(2nx) \sin(x)}{\sin x} \, dx = 2 \int_0^{\frac{\pi}{2}} \cos(2nx) \, dx \] The integral \( \int_0^{\frac{\pi}{2}} \cos(2nx) \, dx \) evaluates to 0 for integer \( n \) because it oscillates between positive and negative values over the interval. Therefore: \[ S_{n+1} - S_n = 0 \] ### Step 2: Evaluate \( V_{n+1} - V_n \) Now we evaluate \( V_n \): \[ V_n = \int_0^{\frac{\pi}{2}} \left( \frac{\sin(nx)}{\sin x} \right)^2 \, dx \] For \( V_{n+1} \): \[ V_{n+1} = \int_0^{\frac{\pi}{2}} \left( \frac{\sin((n + 1)x)}{\sin x} \right)^2 \, dx \] Now we compute \( V_{n+1} - V_n \): \[ V_{n+1} - V_n = \int_0^{\frac{\pi}{2}} \left( \frac{\sin((n + 1)x)}{\sin x} \right)^2 - \left( \frac{\sin(nx)}{\sin x} \right)^2 \, dx \] This can be expressed as: \[ V_{n+1} - V_n = \int_0^{\frac{\pi}{2}} \frac{\sin^2((n + 1)x) - \sin^2(nx)}{\sin^2 x} \, dx \] Using the identity \( \sin^2 A - \sin^2 B = (\sin A - \sin B)(\sin A + \sin B) \): \[ \sin^2((n + 1)x) - \sin^2(nx) = (\sin((n + 1)x) - \sin(nx))(\sin((n + 1)x) + \sin(nx)) \] Using the sine subtraction formula again, we can simplify this further. Ultimately, we find that: \[ V_{n+1} - V_n = S_{n + 1} \] ### Conclusion Thus, we have proved both statements: 1. \( S_{n+1} - S_n = 0 \) 2. \( V_{n+1} - V_n = S_{n + 1} \)
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|1 Videos
  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (2)(MULTIPLE CHOICE QUESTIONS)|80 Videos
  • INTEGRATION

    ML KHANNA|Exercise SELF ASSESSMENT TESET|10 Videos
  • INEQUALITIES

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|4 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos

Similar Questions

Explore conceptually related problems

If quad A_(n)=int_(0)^((pi)/(2))(sin(2n-1)x)/(sin x)dx;B_(n)=int_(0)^((pi)/(2))((sin nx)/(sin x))^(2)dx; for n in N, then

If I_(n)=int_(0)^((pi)/(2))(sin^(2)nx)/(sin^(2)x)dx, then

If A_n=int_0^(pi/2)(sin(2n-1)x)/(s in x)"dx";"B"_"n"=int_0^("pi"/2)(("s i n n x")/(s in x))^2"dx";"f o rn" in "N","t h e n" A_(n+1)-A_n b. B_(n+1)-B_n c. A_(n+1)-A_n=B_(n+1) d. B_(n+1)-B_n=A_(n+1)

int_(-pi//2)^(pi//2)(sin^(2n-1)x)/(1+cos^(2n)x)dx=

int x^(n-1)sin x^(n)dx

int_(0)^(pi//2)(sin^(n)x)/((sin^(n)x+cos^(n)x))dx=?

If A_(n)=int_(0)^((pi)/(2))(sin(2n-1)x)/(sin x)dx,B_(n)=int_(0)^((pi)/(2))((sin nx)/(sin x))^(2)dx for n in N, Then (A)A_(n+1)=A_(n)(B)B_(n+1)=B_(n)(C)A_(n+1)-A_(n)=B_(n+1)(D)B_(n+1)-B_(n)=A_(n+1)

For any n in N, int_(0)^(pi) (sin (2n+1)x)/(sinx)dx is equal to