Home
Class 12
MATHS
int(3 cos x + 2 sin x)/(4 sin x + 5 cos ...

`int(3 cos x + 2 sin x)/(4 sin x + 5 cos x) dx = ..........`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ \int \frac{3 \cos x + 2 \sin x}{4 \sin x + 5 \cos x} \, dx, \] we can use the method of substitution and partial fractions. ### Step 1: Rewrite the Numerator We want to express the numerator \(3 \cos x + 2 \sin x\) in terms of the derivative of the denominator \(4 \sin x + 5 \cos x\). Let \(u = 4 \sin x + 5 \cos x\). Then, we find the derivative: \[ \frac{du}{dx} = 4 \cos x - 5 \sin x. \] ### Step 2: Express the Numerator in Terms of \(u\) We can express \(3 \cos x + 2 \sin x\) in terms of \(u\). We need to find constants \(A\) and \(B\) such that: \[ 3 \cos x + 2 \sin x = A(4 \cos x - 5 \sin x) + B(4 \sin x + 5 \cos x). \] ### Step 3: Set Up the System of Equations By comparing coefficients, we can set up the following equations: 1. For \(\cos x\): \[ 3 = 5B + 4A \quad \text{(Equation 1)} \] 2. For \(\sin x\): \[ 2 = 4B - 5A \quad \text{(Equation 2)} \] ### Step 4: Solve the System of Equations From Equation 1: \[ 4A + 5B = 3. \] From Equation 2: \[ -5A + 4B = 2. \] Now, we can solve these equations simultaneously. Multiply Equation 1 by 5: \[ 20A + 25B = 15. \] Multiply Equation 2 by 4: \[ -20A + 16B = 8. \] Now, add these two equations: \[ (20A - 20A) + (25B + 16B) = 15 + 8, \] which simplifies to: \[ 41B = 23 \implies B = \frac{23}{41}. \] Substituting \(B\) back into Equation 1: \[ 4A + 5\left(\frac{23}{41}\right) = 3, \] which gives: \[ 4A + \frac{115}{41} = 3. \] Multiplying through by 41 to eliminate the fraction: \[ 164A + 115 = 123 \implies 164A = 8 \implies A = \frac{2}{41}. \] ### Step 5: Substitute Back into the Integral Now we substitute \(A\) and \(B\) back into the integral: \[ \int \frac{3 \cos x + 2 \sin x}{4 \sin x + 5 \cos x} \, dx = \int \left(\frac{2}{41}(4 \sin x + 5 \cos x) + \frac{23}{41}(4 \cos x - 5 \sin x)\right) \frac{1}{4 \sin x + 5 \cos x} \, dx. \] ### Step 6: Integrate This simplifies to: \[ \frac{2}{41} \int dx + \frac{23}{41} \int \frac{4 \cos x - 5 \sin x}{4 \sin x + 5 \cos x} \, dx. \] The first integral is straightforward: \[ \frac{2}{41} x + C_1. \] The second integral can be solved using the substitution \(u = 4 \sin x + 5 \cos x\): \[ \int \frac{du}{u} = \ln |u| + C_2 = \ln |4 \sin x + 5 \cos x| + C_2. \] ### Final Answer Combining everything, we get: \[ \int \frac{3 \cos x + 2 \sin x}{4 \sin x + 5 \cos x} \, dx = \frac{2}{41} x + \frac{23}{41} \ln |4 \sin x + 5 \cos x| + C. \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|1 Videos
  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (2)(MULTIPLE CHOICE QUESTIONS)|80 Videos
  • INTEGRATION

    ML KHANNA|Exercise SELF ASSESSMENT TESET|10 Videos
  • INEQUALITIES

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|4 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos

Similar Questions

Explore conceptually related problems

int(sin x)/(5+cos x)dx

int(cos x)/(4+sin x)dx

int(sin x+cos x)/(sin x-cos x)dx

int (3-4 sin x)/(cos^(2) x) dx=?

int(cos x+3sin x-5dx)/(3(1-sin x)-cos x)

int (cos x-sin x) / ((cos x + sin x) dx)

int ((cos x + sin x) / (cos x-sin x)) dx

5. int((cos x+sin x)dx)/(sinx-cos x)