Home
Class 12
MATHS
intx^3e^(x^2) dx is equal to...

`intx^3e^(x^2)` dx is equal to

A

`x^2(e^(x^2)-1)`

B

`1/2x^2(e^(x^2)-1)`

C

`1/2e^(x^2)(x^2-1)`

D

`1/2(e^(x^2)-1)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int x^3 e^{x^2} \, dx \), we will use substitution and integration by parts. Here’s a step-by-step solution: ### Step 1: Substitution Let \( t = x^2 \). Then, differentiate both sides: \[ dt = 2x \, dx \quad \Rightarrow \quad dx = \frac{dt}{2x} \] Now, we can express \( x^3 \) in terms of \( t \): \[ x^3 = x \cdot x^2 = x \cdot t \] Thus, the integral becomes: \[ \int x^3 e^{x^2} \, dx = \int x t e^t \cdot \frac{dt}{2x} \] The \( x \) in the numerator and denominator cancels out: \[ = \frac{1}{2} \int t e^t \, dt \] ### Step 2: Integration by Parts We will use integration by parts on \( \int t e^t \, dt \). Let: - \( u = t \) \(\Rightarrow du = dt\) - \( dv = e^t \, dt \) \(\Rightarrow v = e^t\) Using the integration by parts formula \( \int u \, dv = uv - \int v \, du \): \[ \int t e^t \, dt = t e^t - \int e^t \, dt \] Now, integrating \( e^t \): \[ = t e^t - e^t \] ### Step 3: Substitute Back Now we substitute back into our integral: \[ \frac{1}{2} \int t e^t \, dt = \frac{1}{2} \left( t e^t - e^t \right) + C \] Substituting \( t = x^2 \): \[ = \frac{1}{2} \left( x^2 e^{x^2} - e^{x^2} \right) + C \] Factoring out \( e^{x^2} \): \[ = \frac{1}{2} e^{x^2} (x^2 - 1) + C \] ### Final Answer Thus, the final answer is: \[ \int x^3 e^{x^2} \, dx = \frac{1}{2} e^{x^2} (x^2 - 1) + C \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (2)(FILL IN THE BLANKS)|1 Videos
  • INTEGRATION

    ML KHANNA|Exercise SELF ASSESSMENT TESET|10 Videos
  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|1 Videos
  • INEQUALITIES

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|4 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos

Similar Questions

Explore conceptually related problems

intx^3dx is equal to …

If intxe^(2x)dx is equal to e^(2x)f(x)+c , where c is constant of integration, then f(x) is

intx^(3)log x dx is equal to

If intf(x)dx=g(x),then intx^(11)f(x^(6))dx is equal to

intx^3/(1+x^2)^2dx

intx^(4)e^(2x)dx=