Home
Class 12
MATHS
int0^1tan^(-1)xdx=...

`int_0^1tan^(-1)xdx=`

A

`pi//4`

B

`(pi//4) +log 2`

C

`(pi//4)-1/2log2`

D

`(pi//2) +log2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_0^1 \tan^{-1}(x) \, dx \), we will use the method of integration by parts. ### Step-by-Step Solution: 1. **Choose \( u \) and \( dv \)**: Let: \[ u = \tan^{-1}(x) \quad \text{and} \quad dv = dx \] 2. **Differentiate \( u \) and integrate \( dv \)**: Then, we find: \[ du = \frac{1}{1+x^2} \, dx \quad \text{and} \quad v = x \] 3. **Apply the integration by parts formula**: The formula for integration by parts is: \[ \int u \, dv = uv - \int v \, du \] Substituting our values, we have: \[ \int \tan^{-1}(x) \, dx = x \tan^{-1}(x) - \int x \cdot \frac{1}{1+x^2} \, dx \] 4. **Simplify the second integral**: The integral \( \int x \cdot \frac{1}{1+x^2} \, dx \) can be simplified by using the substitution \( w = 1 + x^2 \), which gives \( dw = 2x \, dx \) or \( dx = \frac{dw}{2x} \). Thus: \[ \int x \cdot \frac{1}{1+x^2} \, dx = \frac{1}{2} \int \frac{1}{w} \, dw = \frac{1}{2} \ln|w| + C = \frac{1}{2} \ln(1+x^2) + C \] 5. **Combine the results**: Now substituting back, we have: \[ \int \tan^{-1}(x) \, dx = x \tan^{-1}(x) - \frac{1}{2} \ln(1+x^2) + C \] 6. **Evaluate the definite integral from 0 to 1**: Now we need to evaluate: \[ \int_0^1 \tan^{-1}(x) \, dx = \left[ x \tan^{-1}(x) - \frac{1}{2} \ln(1+x^2) \right]_0^1 \] - **Upper limit (1)**: \[ 1 \cdot \tan^{-1}(1) - \frac{1}{2} \ln(1+1^2) = 1 \cdot \frac{\pi}{4} - \frac{1}{2} \ln(2) \] This simplifies to: \[ \frac{\pi}{4} - \frac{1}{2} \ln(2) \] - **Lower limit (0)**: \[ 0 \cdot \tan^{-1}(0) - \frac{1}{2} \ln(1+0^2) = 0 - \frac{1}{2} \ln(1) = 0 \] 7. **Final result**: Therefore, the value of the definite integral is: \[ \int_0^1 \tan^{-1}(x) \, dx = \left( \frac{\pi}{4} - \frac{1}{2} \ln(2) \right) - 0 = \frac{\pi}{4} - \frac{1}{2} \ln(2) \] ### Final Answer: \[ \int_0^1 \tan^{-1}(x) \, dx = \frac{\pi}{4} - \frac{1}{2} \ln(2) \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (2)(FILL IN THE BLANKS)|1 Videos
  • INTEGRATION

    ML KHANNA|Exercise SELF ASSESSMENT TESET|10 Videos
  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|1 Videos
  • INEQUALITIES

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|4 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos

Similar Questions

Explore conceptually related problems

int_0^1 tan^-1xdx

int_(0)^(1)tan^(-1)xdx

Evaluate the following integral: int_(0)^(1)tan^(-1)xdx

If 2int_(0)^(1)tan^(-1)xdx=int_(0)^(1)cot^(-1)(1-x+x^(2))dx then int_(0)^(1)tan^(-1)(1-x+x^(2))dx=

The nth term of the coresponding series of int_(0)^(1)tan^(-1)xdx is (A) (pi)/(4n) (B) ((1)/(n))tan^(-1)(n-1)(C)(pi)/(2n)(D)tan^(-1)(n)

int_(0)^(1)tan^(-1)xdx=alpha, then int_(0)^((pi)/(4))tan^(-1)((2cos^(2)theta)/(2-sin2 theta))sec^(2)theta d theta is equal to: alpha(b)(alpha)/(2)(c)3 alpha(d)2 alpha

STATEMENT-1 : int_(-3)^(3)|x|dx=9 STATEMENT-2 : int_(0)^(1)tan^(-1)xdx=(pi)/(4)-lnsqrt(2) STATEMENT-3 : int_(0)^(pi//2)(sqrt(cosx))/(sqrt(sinx)+sqrt(cosx))dx=(pi)/(4)

int_(0)^(1)(tan^(-1)xdx)/((1+x^(2))^((3)/(2)))

If 2int_(0)^(1) tan^(-1)xdx=int_(2)^(1)cot^(-1)(1-x+x^(2))dx . Then int_(0)^(1) tan^(-1)(1-x+x^(2))dx is equal to

Show that: int_0^1 tan^-1x/xdx=1/2int_0^(pi/2) ycosecy dy