Home
Class 12
MATHS
intx((sec 2x-1))/((sec 2x+1))dx =...

`intx((sec 2x-1))/((sec 2x+1))dx = `

A

`x tan x - log sec x -x^2/2`

B

`x tan x + log sec x +x^2/2`

C

`xsec^2x+logtan x-x^2/2`

D

none

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{\sec 2x - 1}{\sec 2x + 1} \, dx \), we will follow these steps: ### Step 1: Rewrite the integral in terms of cosine Recall that \( \sec 2x = \frac{1}{\cos 2x} \). Therefore, we can rewrite the integral as: \[ \int \frac{\frac{1}{\cos 2x} - 1}{\frac{1}{\cos 2x} + 1} \, dx \] This simplifies to: \[ \int \frac{1 - \cos 2x}{1 + \cos 2x} \, dx \] ### Step 2: Simplify the fraction To simplify \( \frac{1 - \cos 2x}{1 + \cos 2x} \), we can multiply the numerator and denominator by \( \cos 2x \): \[ \int \frac{(1 - \cos 2x) \cos 2x}{(1 + \cos 2x) \cos 2x} \, dx = \int \frac{\cos 2x - \cos^2 2x}{\cos 2x + \cos^2 2x} \, dx \] This gives us: \[ \int \frac{1 - \cos 2x}{1 + \cos 2x} \, dx \] ### Step 3: Use trigonometric identities Using the identity \( 1 - \cos 2x = 2 \sin^2 x \) and \( 1 + \cos 2x = 2 \cos^2 x \), we can rewrite the integral: \[ \int \frac{2 \sin^2 x}{2 \cos^2 x} \, dx = \int \tan^2 x \, dx \] ### Step 4: Integrate using the identity for tangent The integral of \( \tan^2 x \) can be expressed as: \[ \int \tan^2 x \, dx = \int (\sec^2 x - 1) \, dx = \int \sec^2 x \, dx - \int 1 \, dx \] This results in: \[ \tan x - x + C \] ### Step 5: Final answer Thus, the final answer for the integral \( \int \frac{\sec 2x - 1}{\sec 2x + 1} \, dx \) is: \[ \tan x - x + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (2)(FILL IN THE BLANKS)|1 Videos
  • INTEGRATION

    ML KHANNA|Exercise SELF ASSESSMENT TESET|10 Videos
  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|1 Videos
  • INEQUALITIES

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|4 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos

Similar Questions

Explore conceptually related problems

int x((sec2x-1)/(sec2x+1))dx

Evaluate: int x((sec2x-1)/(sec2x+1))dx

int(sec x)/((sec x+tan x)^(2))dx

Evaluate int( sec2x-1)/(sec2x+1)dx

If y = sqrt((sec x -1)/(sec x + 1)) " then " (dy)/(dx) = ?

int(tan x+sec x-1)/(tan x-sec x+1)dx

Evaluate: int(sec x)/(sec2x)dx

int (1+sec^2x)dx

(d)/(dx)[sqrt((sec x-1)/(sec x+1))]=

int(sec^2sqrt (x+1))/sqrt (x+1)dx