Home
Class 12
MATHS
intsin^(-1)((2x)/(1+x^2))dx = intcos^(-1...

`intsin^(-1)((2x)/(1+x^2))dx = intcos^(-1)""(1- x^2)/(1+x^2)dx=inttan^(-1)""(2x)/(1-x^2)dx`

A

`2x tan^(-1) x - log (1+x^2)`

B

`2[x tan^(-1) x - log (1+x^2)]`

C

`2xtan^(-1)x+log(1+x^2)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we will evaluate the integrals step by step. The question states that: \[ \int \sin^{-1}\left(\frac{2x}{1+x^2}\right)dx = \int \cos^{-1}\left(\frac{1-x^2}{1+x^2}\right)dx = \int \tan^{-1}\left(\frac{2x}{1-x^2}\right)dx \] We will show that all three integrals are equal to \(2 \tan^{-1}(x) + C\), where \(C\) is the constant of integration. ### Step 1: Recognize the Integral Forms The integrals can be recognized as standard forms of inverse trigonometric functions. We will use the fact that: \[ \int \tan^{-1}(x) \, dx = x \tan^{-1}(x) - \frac{1}{2} \ln(1+x^2) + C \] ### Step 2: Integrate \(\tan^{-1}\left(\frac{2x}{1-x^2}\right)\) Using the substitution \(u = \tan^{-1}(x)\), we can derive the integral for \(\tan^{-1}\left(\frac{2x}{1-x^2}\right)\): \[ \int \tan^{-1}\left(\frac{2x}{1-x^2}\right)dx \] Using integration by parts, let \(u = \tan^{-1}(x)\) and \(dv = dx\). Then, \(du = \frac{1}{1+x^2}dx\) and \(v = x\). Applying integration by parts: \[ \int u \, dv = uv - \int v \, du \] This gives us: \[ x \tan^{-1}(x) - \int x \cdot \frac{1}{1+x^2}dx \] ### Step 3: Solve the Remaining Integral Now we need to solve the integral: \[ \int \frac{x}{1+x^2}dx \] This can be solved using the substitution \(w = 1+x^2\), \(dw = 2x \, dx\), or directly recognizing that: \[ \int \frac{x}{1+x^2}dx = \frac{1}{2} \ln(1+x^2) + C \] ### Step 4: Combine the Results Now, substituting back into our integration by parts result: \[ \int \tan^{-1}\left(\frac{2x}{1-x^2}\right)dx = x \tan^{-1}(x) - \left(\frac{1}{2} \ln(1+x^2)\right) + C \] ### Step 5: Final Result Thus, the final result for the integral is: \[ 2 \tan^{-1}(x) - \frac{1}{2} \ln(1+x^2) + C \] ### Conclusion The three integrals are equal and can be expressed in terms of \(2 \tan^{-1}(x)\) and the logarithmic term.
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (2)(FILL IN THE BLANKS)|1 Videos
  • INTEGRATION

    ML KHANNA|Exercise SELF ASSESSMENT TESET|10 Videos
  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|1 Videos
  • INEQUALITIES

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|4 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos

Similar Questions

Explore conceptually related problems

int(1-2x)/(1+x-x^(2))dx

intsin^-1x/(1-x^2)^(3/2)dx

intsin(tan^-1x)/(1+x^2)dx

inttan^-1(x/sqrt(1+x^2))dx

Evaluate: intcos^-1((1-x^2)/(1+x^2))dx

intcos^-1((1-tan^2x)/(1+tan^2x))dx

inttan^(-1)((2tanx)/(1-tan^(2)x))dx=

int_(-1)^(1)(1-x^(2))/(1+x^(2))dx is

int(x-1)/(1-2x+x^(2))dx=

Evaluate : (i) intsin^(-1)(3x-4x^(3))dx (ii) intsin^(-1)((2x)/(1+x^(2)))dx (iii) inttan^(-1)sqrt((1-x)/(1+x))dx (iv) intsin^(-1)sqrt((x)/(a+x))dx