Home
Class 12
MATHS
int(x^2tan^(-1)x)/(1+x^2)dx =...

`int(x^2tan^(-1)x)/(1+x^2)dx =`

A

`x tan^(-1)x-1/2log(1+x^2)-1/3(tan^(-1)x)^2`

B

`x tan^(-1)x+1/2(1+x^2)+1/2(tan^(-1)x)^2`

C

`x tan^(-1)x-1/2log(1+x^2)+1/2(tan^(-1)x)^2`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ \int \frac{x^2 \tan^{-1}(x)}{1+x^2} \, dx, \] we can use integration by parts and some algebraic manipulation. Let's break it down step by step. ### Step 1: Rewrite the integral We can rewrite the integrand by separating the terms. We notice that we can express \(x^2\) as \( (1 + x^2) - 1 \): \[ \int \frac{x^2 \tan^{-1}(x)}{1+x^2} \, dx = \int \frac{(1 + x^2 - 1) \tan^{-1}(x)}{1+x^2} \, dx. \] This simplifies to: \[ \int \tan^{-1}(x) \, dx - \int \frac{\tan^{-1}(x)}{1+x^2} \, dx. \] ### Step 2: Integrate the first part Now we need to integrate \( \int \tan^{-1}(x) \, dx \). We will use integration by parts here. Let: - \( u = \tan^{-1}(x) \) → \( du = \frac{1}{1+x^2} \, dx \) - \( dv = dx \) → \( v = x \) Using the integration by parts formula \( \int u \, dv = uv - \int v \, du \): \[ \int \tan^{-1}(x) \, dx = x \tan^{-1}(x) - \int x \cdot \frac{1}{1+x^2} \, dx. \] ### Step 3: Simplify the second integral Now we need to compute \( \int \frac{x}{1+x^2} \, dx \). We can use a simple substitution: Let \( w = 1 + x^2 \) → \( dw = 2x \, dx \) → \( dx = \frac{dw}{2x} \). This gives us: \[ \int \frac{x}{1+x^2} \, dx = \frac{1}{2} \int \frac{1}{w} \, dw = \frac{1}{2} \ln |w| + C = \frac{1}{2} \ln(1+x^2) + C. \] ### Step 4: Combine the results Now substituting back, we have: \[ \int \tan^{-1}(x) \, dx = x \tan^{-1}(x) - \frac{1}{2} \ln(1+x^2) + C. \] ### Step 5: Integrate the second part Now we need to compute \( -\int \frac{\tan^{-1}(x)}{1+x^2} \, dx \). This integral can be solved using the formula for the integral of \( \frac{f'(x)}{f(x)} \): \[ -\int \frac{\tan^{-1}(x)}{1+x^2} \, dx = -\frac{1}{2} \ln(1+x^2) + \frac{1}{2} \tan^{-1}(x)^2 + C. \] ### Final Result Combining everything, we get: \[ \int \frac{x^2 \tan^{-1}(x)}{1+x^2} \, dx = x \tan^{-1}(x) - \frac{1}{2} \ln(1+x^2) - \frac{1}{2} \tan^{-1}(x)^2 + C. \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (2)(FILL IN THE BLANKS)|1 Videos
  • INTEGRATION

    ML KHANNA|Exercise SELF ASSESSMENT TESET|10 Videos
  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|1 Videos
  • INEQUALITIES

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|4 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos

Similar Questions

Explore conceptually related problems

int(tan^(-1)x)/(1+x^(2))dx=

int(tan^(-1)x)/(1+x^(2))dx

int(x^(2)tan^(-1)x)/(1+x^(2))dx

Evaluate: int(x^(2)tan^(-1)x)/(1+x^(2))dx

int(tan^(-1)x)/(1+x^(2)) dx=?

int(m tan^(-1)x)/(1+x^(2))dx

int(tan^(-1)x)/((1+x)^(2))dx

int(tan^(-1)x)/(x^(2)+1)dx

int(tan^(-1)x)/(x^(2))*dx

int(e^(tan^(-1)x))/(1+x^(2))dx