Home
Class 12
MATHS
intxtan^(-1)x dx =...

`intxtan^(-1)x dx =`

A

`1/2(x^2+1)tan^(-1)x-x`

B

`1/2(x^2+1)tan^(-1)x-1/2x`

C

`(x^2+1) tan^(-1)x - x`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int x \tan^{-1}(x) \, dx \), we will use the method of integration by parts. The formula for integration by parts is: \[ \int u \, dv = uv - \int v \, du \] ### Step 1: Choose \( u \) and \( dv \) Let: - \( u = \tan^{-1}(x) \) (which we will differentiate) - \( dv = x \, dx \) (which we will integrate) ### Step 2: Differentiate \( u \) and Integrate \( dv \) Now we need to find \( du \) and \( v \): - Differentiate \( u \): \[ du = \frac{1}{1+x^2} \, dx \] - Integrate \( dv \): \[ v = \frac{x^2}{2} \] ### Step 3: Apply the Integration by Parts Formula Now we can apply the integration by parts formula: \[ \int x \tan^{-1}(x) \, dx = uv - \int v \, du \] Substituting the values we found: \[ = \tan^{-1}(x) \cdot \frac{x^2}{2} - \int \frac{x^2}{2} \cdot \frac{1}{1+x^2} \, dx \] ### Step 4: Simplify the Integral Now simplify the integral: \[ = \frac{x^2}{2} \tan^{-1}(x) - \frac{1}{2} \int \frac{x^2}{1+x^2} \, dx \] We can simplify \( \frac{x^2}{1+x^2} \): \[ \frac{x^2}{1+x^2} = 1 - \frac{1}{1+x^2} \] Thus, we can rewrite the integral: \[ = \frac{x^2}{2} \tan^{-1}(x) - \frac{1}{2} \left( \int 1 \, dx - \int \frac{1}{1+x^2} \, dx \right) \] ### Step 5: Integrate Now, we can integrate: \[ \int 1 \, dx = x \] \[ \int \frac{1}{1+x^2} \, dx = \tan^{-1}(x) \] Putting it all together: \[ = \frac{x^2}{2} \tan^{-1}(x) - \frac{1}{2} \left( x - \tan^{-1}(x) \right) \] \[ = \frac{x^2}{2} \tan^{-1}(x) - \frac{x}{2} + \frac{1}{2} \tan^{-1}(x) \] ### Step 6: Combine Like Terms Now, combine the terms: \[ = \left( \frac{x^2}{2} + \frac{1}{2} \right) \tan^{-1}(x) - \frac{x}{2} \] ### Final Answer Thus, the final answer is: \[ \int x \tan^{-1}(x) \, dx = \frac{x^2 + 1}{2} \tan^{-1}(x) - \frac{x}{2} + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (2)(FILL IN THE BLANKS)|1 Videos
  • INTEGRATION

    ML KHANNA|Exercise SELF ASSESSMENT TESET|10 Videos
  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|1 Videos
  • INEQUALITIES

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|4 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos

Similar Questions

Explore conceptually related problems

Evaluate : intxtan^(-1)xdx

Consider intxtan^(-1)xdx=A(x^(2)+1)tan^(-1)x+Bx+C where , C is the constant of integration. What is the value of A ?

Consider intxtan^(-1)xdx=A(x^(2)+1)tan^(-1)x+Bx+C where , C is the constant of integration. What is the value of B ?

Evaluate intxtan^-1xdx

Evaluate the following integrals: intxtan^(2)xdx

(i) int x sin^-1 x dx (ii) int x cos^-1 x dx (iii) int x tan^-1 x dx (iv) int x cot^-1 x dx

intxtan^2xdx=

(i) int(1)/((1+x^(2))tan ^(-1) x )dx " "(ii) int(e^(tan^(-1)x))/(1+x^(2))dx

If intf(x)dx=g(x), then : intf^(-1)(x)dx=

If f(x)dx=g(x) and f^(-1)(x) is differentiable, then intf^(-1)(x)dx equal to