Home
Class 12
MATHS
intx^3tan^(-1)xdx=...

`intx^3tan^(-1)xdx=`

A

`[(x^4-1)tan^(-1)x-x^3/3+x]`

B

`1/2[(x^4-1)tan^(-1)x-x^3/3+x]`

C

`1/3[(x^4-1)tan^(-1)x-x^3/3+x]`

D

`1/4[(x^4-1)tan^(-1)x-x^3/3+x]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int x^3 \tan^{-1}(x) \, dx \), we will use the method of integration by parts. The formula for integration by parts is given by: \[ \int u \, dv = uv - \int v \, du \] ### Step 1: Choose \( u \) and \( dv \) Let: - \( u = \tan^{-1}(x) \) (which we will differentiate) - \( dv = x^3 \, dx \) (which we will integrate) ### Step 2: Differentiate \( u \) and integrate \( dv \) Now, we need to find \( du \) and \( v \): - Differentiate \( u \): \[ du = \frac{1}{1+x^2} \, dx \] - Integrate \( dv \): \[ v = \int x^3 \, dx = \frac{x^4}{4} \] ### Step 3: Apply the integration by parts formula Now, substitute \( u \), \( du \), \( v \), and \( dv \) into the integration by parts formula: \[ \int x^3 \tan^{-1}(x) \, dx = uv - \int v \, du \] Substituting the values we found: \[ = \tan^{-1}(x) \cdot \frac{x^4}{4} - \int \frac{x^4}{4} \cdot \frac{1}{1+x^2} \, dx \] ### Step 4: Simplify the integral Now we need to simplify the integral: \[ = \frac{x^4}{4} \tan^{-1}(x) - \frac{1}{4} \int \frac{x^4}{1+x^2} \, dx \] We can simplify \( \frac{x^4}{1+x^2} \): \[ \frac{x^4}{1+x^2} = x^2 - \frac{x^2}{1+x^2} \] So, we rewrite the integral: \[ \int \frac{x^4}{1+x^2} \, dx = \int x^2 \, dx - \int \frac{x^2}{1+x^2} \, dx \] ### Step 5: Calculate the integrals Now we calculate each integral: 1. \( \int x^2 \, dx = \frac{x^3}{3} \) 2. For \( \int \frac{x^2}{1+x^2} \, dx \), we can use substitution: Let \( t = 1 + x^2 \), then \( dt = 2x \, dx \) or \( dx = \frac{dt}{2x} = \frac{dt}{2\sqrt{t-1}} \). The integral becomes: \[ \int \frac{x^2}{1+x^2} \, dx = \int \frac{t-1}{t} \cdot \frac{dt}{2\sqrt{t-1}} = \frac{1}{2} \int \left(1 - \frac{1}{t}\right) \sqrt{t-1} \, dt \] ### Step 6: Combine all parts Now combine everything back: \[ \int x^3 \tan^{-1}(x) \, dx = \frac{x^4}{4} \tan^{-1}(x) - \frac{1}{4} \left( \frac{x^3}{3} - \text{(result of the second integral)} \right) + C \] ### Final Result After calculating the second integral and simplifying, we can write the final result of the integral.
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (2)(FILL IN THE BLANKS)|1 Videos
  • INTEGRATION

    ML KHANNA|Exercise SELF ASSESSMENT TESET|10 Videos
  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|1 Videos
  • INEQUALITIES

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|4 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos

Similar Questions

Explore conceptually related problems

intx^3.tan^-1xdx

int x*tan^(-1)xdx

int x tan^(-1)xdx

int x^(3)tan^(-1)xdx

Evaluate: int x^(3)tan^(-1)xdx

if int x tan^(-1)xdx=u tan^(-1)x-(x)/(2)+c then u=

int tan^(-1)xdx

int x^(2)tan^(-1)xdx

Evaluate: int x^(2)tan^(-1)xdx