Home
Class 12
MATHS
int1^elogxdx=...

`int_1^elogxdx=`

A

1

B

`-1`

C

`+1`

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_1^e \log x \, dx \), we will use integration by parts. The integration by parts formula is given by: \[ \int u \, dv = uv - \int v \, du \] ### Step 1: Choose \( u \) and \( dv \) Let: - \( u = \log x \) (which we will differentiate) - \( dv = dx \) (which we will integrate) ### Step 2: Differentiate \( u \) and Integrate \( dv \) Now we differentiate \( u \) and integrate \( dv \): - \( du = \frac{1}{x} \, dx \) - \( v = x \) ### Step 3: Apply the Integration by Parts Formula Now we apply the integration by parts formula: \[ \int \log x \, dx = x \log x - \int x \cdot \frac{1}{x} \, dx \] This simplifies to: \[ \int \log x \, dx = x \log x - \int 1 \, dx \] ### Step 4: Solve the Integral Now, we compute the integral: \[ \int 1 \, dx = x \] Thus, we have: \[ \int \log x \, dx = x \log x - x + C \] ### Step 5: Evaluate the Definite Integral Now we need to evaluate the definite integral from 1 to \( e \): \[ \int_1^e \log x \, dx = \left[ x \log x - x \right]_1^e \] ### Step 6: Substitute the Limits Now we will substitute the limits: 1. Substitute \( x = e \): \[ e \log e - e = e \cdot 1 - e = e - e = 0 \] 2. Substitute \( x = 1 \): \[ 1 \log 1 - 1 = 1 \cdot 0 - 1 = 0 - 1 = -1 \] ### Step 7: Calculate the Final Result Now we combine the results from the limits: \[ \int_1^e \log x \, dx = 0 - (-1) = 1 \] Thus, the final answer is: \[ \int_1^e \log x \, dx = 1 \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (2)(FILL IN THE BLANKS)|1 Videos
  • INTEGRATION

    ML KHANNA|Exercise SELF ASSESSMENT TESET|10 Videos
  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|1 Videos
  • INEQUALITIES

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|4 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos

Similar Questions

Explore conceptually related problems

int1/x^2 log xdx=?

int_1^e (dx)/x

int_1^2e^({x})dx=?

int_1^2(3x-4)dx=?

int_1^2 dx

Evaluate int_1^3 x^2 dx

int_1^3 (1/x) dx

IF int_e^1tan^-1xdx=p ,then int_e^1tan^-1((1-x)/(1+x))dx=