Home
Class 12
MATHS
intx^nlogxdx =...

`intx^nlogxdx =`

A

`(x^(n+1))/n[n log x -1]`

B

`(x^(n+1))/(n+1)[(n+1)logx-1]`

C

`(x^(n+1))/((n+1)^2)[(n+1)logx-1]`

D

none

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int x^n \log x \, dx \), we will use the method of integration by parts. ### Step-by-Step Solution: 1. **Identify the parts for integration by parts**: We choose: - \( u = \log x \) (which we will differentiate) - \( dv = x^n \, dx \) (which we will integrate) 2. **Differentiate and integrate**: - Differentiate \( u \): \[ du = \frac{1}{x} \, dx \] - Integrate \( dv \): \[ v = \int x^n \, dx = \frac{x^{n+1}}{n+1} \] 3. **Apply the integration by parts formula**: The formula for integration by parts is: \[ \int u \, dv = uv - \int v \, du \] Substituting our values: \[ \int x^n \log x \, dx = \left( \log x \cdot \frac{x^{n+1}}{n+1} \right) - \int \left( \frac{x^{n+1}}{n+1} \cdot \frac{1}{x} \right) \, dx \] 4. **Simplify the integral**: The integral simplifies to: \[ \int x^n \log x \, dx = \frac{x^{n+1} \log x}{n+1} - \frac{1}{n+1} \int x^n \, dx \] 5. **Integrate \( \int x^n \, dx \)**: We know: \[ \int x^n \, dx = \frac{x^{n+1}}{n+1} \] Substituting this back into our equation: \[ \int x^n \log x \, dx = \frac{x^{n+1} \log x}{n+1} - \frac{1}{n+1} \cdot \frac{x^{n+1}}{n+1} \] 6. **Combine the terms**: \[ \int x^n \log x \, dx = \frac{x^{n+1} \log x}{n+1} - \frac{x^{n+1}}{(n+1)^2} \] Factor out \( \frac{x^{n+1}}{n+1} \): \[ \int x^n \log x \, dx = \frac{x^{n+1}}{n+1} \left( \log x - \frac{1}{n+1} \right) + C \] ### Final Answer: \[ \int x^n \log x \, dx = \frac{x^{n+1}}{n+1} \left( \log x - \frac{1}{n+1} \right) + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (2)(FILL IN THE BLANKS)|1 Videos
  • INTEGRATION

    ML KHANNA|Exercise SELF ASSESSMENT TESET|10 Videos
  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|1 Videos
  • INEQUALITIES

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|4 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos

Similar Questions

Explore conceptually related problems

intx^3logxdx=

intx^(2)logxdx=

Evaluate : intx^(n)logxdx .

intx^(x)dx+intx^(x)logxdx=

Evaluate: intx^2logxdx

intx logx dx is equal to

intx^(3)log x dx is equal to

intx^x(1+logx)dx

intx cosxdx=