Home
Class 12
MATHS
intx^3(logx)^2dx...

`intx^3(logx)^2dx `

A

`1/32 x^4[8(log x)^2+4log x -1 ]`

B

`1/32 x^4[8(log x)^2+4log x +1 ]`

C

`1/32 x^4[8(log x)^2-4log x +1 ]`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int x^3 (\log x)^2 \, dx \), we will use the method of integration by parts. The integration by parts formula is given by: \[ \int u \, dv = uv - \int v \, du \] ### Step 1: Choose \( u \) and \( dv \) Let: - \( u = (\log x)^2 \) (First function) - \( dv = x^3 \, dx \) (Second function) ### Step 2: Differentiate \( u \) and Integrate \( dv \) Now we need to find \( du \) and \( v \): - Differentiate \( u \): \[ du = 2 \log x \cdot \frac{1}{x} \, dx = \frac{2 \log x}{x} \, dx \] - Integrate \( dv \): \[ v = \int x^3 \, dx = \frac{x^4}{4} \] ### Step 3: Apply Integration by Parts Now we apply the integration by parts formula: \[ \int x^3 (\log x)^2 \, dx = uv - \int v \, du \] Substituting the values we found: \[ = \left(\frac{x^4}{4} (\log x)^2\right) - \int \left(\frac{x^4}{4} \cdot \frac{2 \log x}{x}\right) \, dx \] This simplifies to: \[ = \frac{x^4}{4} (\log x)^2 - \frac{1}{2} \int x^3 \log x \, dx \] ### Step 4: Solve \( \int x^3 \log x \, dx \) Using Integration by Parts Again For the integral \( \int x^3 \log x \, dx \), we apply integration by parts again: Let: - \( u = \log x \) - \( dv = x^3 \, dx \) Then: - \( du = \frac{1}{x} \, dx \) - \( v = \frac{x^4}{4} \) Applying integration by parts: \[ \int x^3 \log x \, dx = \left(\frac{x^4}{4} \log x\right) - \int \left(\frac{x^4}{4} \cdot \frac{1}{x}\right) \, dx \] This simplifies to: \[ = \frac{x^4}{4} \log x - \frac{1}{4} \int x^3 \, dx \] Calculating \( \int x^3 \, dx \): \[ = \frac{x^4}{4} \] Thus: \[ \int x^3 \log x \, dx = \frac{x^4}{4} \log x - \frac{1}{4} \cdot \frac{x^4}{4} = \frac{x^4}{4} \log x - \frac{x^4}{16} \] ### Step 5: Substitute Back Now substitute back into our earlier expression: \[ \int x^3 (\log x)^2 \, dx = \frac{x^4}{4} (\log x)^2 - \frac{1}{2} \left( \frac{x^4}{4} \log x - \frac{x^4}{16} \right) \] This simplifies to: \[ = \frac{x^4}{4} (\log x)^2 - \frac{x^4}{8} \log x + \frac{x^4}{32} \] ### Step 6: Combine Terms Now, we can factor out \( \frac{x^4}{32} \): \[ = \frac{x^4}{32} \left( 8 (\log x)^2 - 4 \log x + 1 \right) + C \] ### Final Answer Thus, the final result is: \[ \int x^3 (\log x)^2 \, dx = \frac{x^4}{32} \left( 8 (\log x)^2 - 4 \log x + 1 \right) + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (2)(FILL IN THE BLANKS)|1 Videos
  • INTEGRATION

    ML KHANNA|Exercise SELF ASSESSMENT TESET|10 Videos
  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|1 Videos
  • INEQUALITIES

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|4 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos

Similar Questions

Explore conceptually related problems

intx^x(1+logx)dx

intx^3sin(alogx)dx

int 2^(logx) dx = ?

intx^3e^(x^2)dx

intx^3/(1+x^2)^2dx

intx^(3)log x dx is equal to

int(1)/(x^3)(logx^x)^2dx=