Home
Class 12
MATHS
If int(e^(4x)-1)/(e^(2x))log((e^(2x+1))/...

If `int(e^(4x)-1)/(e^(2x))log((e^(2x+1))/(e^(2x-1)))dx=(u^2/2logu-u^2/4)-(v^2/2logv-v^2/4) ` then

A

`u=v=e^(x)+e^(-x)`

B

`u=e^(x)-e^(-x) , v = e^(x) + e^(-x)`

C

`u= e^(x)+ e^(-x) , v = e^(x) - e^(-x)`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (2)(FILL IN THE BLANKS)|1 Videos
  • INTEGRATION

    ML KHANNA|Exercise SELF ASSESSMENT TESET|10 Videos
  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|1 Videos
  • INEQUALITIES

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|4 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos

Similar Questions

Explore conceptually related problems

int(e^(4x)-1)/(e^(2x))dx

int((e^(2x))/(e^(2x)-1))dx=

I=int(e^(2x)-1)/(e^(2x))dx

int(e^(2x))/(1+e^(2x))dx=

int(e^(2x)+1)/(e^(2x)-1)dx=

"int(e^(x)-2)/(e^(2x)+4)dx

int(e^(2x-1)-e^(1-2x))/(e^(x+2))dx

int (e^(2x)-1)/(e^(2x)+1) dx=?