Home
Class 12
MATHS
The value of int(xsin^(-1)x)/(sqrt((1-x^...

The value of `int(xsin^(-1)x)/(sqrt((1-x^2)))` dx is

A

`sqrt((1-x^2))sin^(-1)x`

B

`xsin^(-1)x`

C

`x-sqrt((1-x^2))sin^(-1)x`

D

`(sin^(-1)x)^2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{x \sin^{-1}(x)}{\sqrt{1 - x^2}} \, dx \), we will use integration by parts. Let's break it down step by step. ### Step 1: Identify Parts for Integration by Parts We will choose: - \( u = \sin^{-1}(x) \) (which we will differentiate) - \( dv = \frac{x}{\sqrt{1 - x^2}} \, dx \) (which we will integrate) ### Step 2: Differentiate and Integrate Now, we need to find \( du \) and \( v \): - Differentiate \( u \): \[ du = \frac{1}{\sqrt{1 - x^2}} \, dx \] - Integrate \( dv \): To integrate \( dv = \frac{x}{\sqrt{1 - x^2}} \, dx \), we can use the substitution \( t = 1 - x^2 \), which gives \( dt = -2x \, dx \) or \( dx = -\frac{dt}{2x} \). Thus, \[ v = \int \frac{x}{\sqrt{1 - x^2}} \, dx = -\frac{1}{2} \sqrt{1 - x^2} \] ### Step 3: Apply Integration by Parts Formula Using the integration by parts formula: \[ \int u \, dv = uv - \int v \, du \] we substitute our values: \[ \int \frac{x \sin^{-1}(x)}{\sqrt{1 - x^2}} \, dx = \sin^{-1}(x) \left(-\frac{1}{2} \sqrt{1 - x^2}\right) - \int \left(-\frac{1}{2} \sqrt{1 - x^2}\right) \left(\frac{1}{\sqrt{1 - x^2}} \, dx\right) \] ### Step 4: Simplify the Expression This simplifies to: \[ -\frac{1}{2} \sin^{-1}(x) \sqrt{1 - x^2} + \frac{1}{2} \int dx \] The integral \( \int dx \) is simply \( x \). ### Step 5: Combine the Results Putting it all together: \[ \int \frac{x \sin^{-1}(x)}{\sqrt{1 - x^2}} \, dx = -\frac{1}{2} \sin^{-1}(x) \sqrt{1 - x^2} + \frac{1}{2} x + C \] ### Final Answer Thus, the value of the integral is: \[ -\frac{1}{2} \sin^{-1}(x) \sqrt{1 - x^2} + \frac{1}{2} x + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (2)(FILL IN THE BLANKS)|1 Videos
  • INTEGRATION

    ML KHANNA|Exercise SELF ASSESSMENT TESET|10 Videos
  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|1 Videos
  • INEQUALITIES

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|4 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos

Similar Questions

Explore conceptually related problems

int(xsin^-1x)/sqrt(1-x^2)dx

int(xsin^(-1)x^(2))/(sqrt(1-x^(4)))dx

(x.sin^(-1)x^(2))/(sqrt(1-x^(4)))

int(xsin^(-1)(x^(2)))/(sqrt(1-x^(4)))dx=

Evaluate int(xsin^-1x)/sqrt (1-x^2)dx

The value of int_(-1)^(1)(dx)/(sqrt(|x|)) is

The value of int(1+logx)/(sqrt((x^(x))^(2)-1))dx " is "

The value of int(dx)/sqrt(1-x) is

Evaluate int_(0)^(1//2)(xsin^(-1)x)/(sqrt(1-x^(2)))dx .