Home
Class 12
MATHS
intxsin^2xdx =...

`intxsin^2xdx =`

A

`1/8[2x^2 - 2x sin 2x - cos 2x]`

B

`1/8[2x^2 + 2x sin 2x - cos 2x]`

C

`1/8[2x^2 - 2x sin 2x + cos 2x]`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int x \sin^2 x \, dx \), we can follow these steps: ### Step 1: Use the identity for \( \sin^2 x \) We know that: \[ \sin^2 x = \frac{1 - \cos 2x}{2} \] Thus, we can rewrite the integral as: \[ \int x \sin^2 x \, dx = \int x \left( \frac{1 - \cos 2x}{2} \right) \, dx = \frac{1}{2} \int x (1 - \cos 2x) \, dx \] ### Step 2: Split the integral Now, we can split the integral into two parts: \[ \frac{1}{2} \int x (1 - \cos 2x) \, dx = \frac{1}{2} \left( \int x \, dx - \int x \cos 2x \, dx \right) \] ### Step 3: Integrate the first part The first integral \( \int x \, dx \) can be calculated as: \[ \int x \, dx = \frac{x^2}{2} \] ### Step 4: Integrate the second part using integration by parts For the integral \( \int x \cos 2x \, dx \), we will use integration by parts. Let: - \( u = x \) (thus \( du = dx \)) - \( dv = \cos 2x \, dx \) (thus \( v = \frac{\sin 2x}{2} \)) Using integration by parts: \[ \int u \, dv = uv - \int v \, du \] We have: \[ \int x \cos 2x \, dx = x \cdot \frac{\sin 2x}{2} - \int \frac{\sin 2x}{2} \, dx \] Now, we need to integrate \( \int \frac{\sin 2x}{2} \, dx \): \[ \int \frac{\sin 2x}{2} \, dx = -\frac{\cos 2x}{4} \] Thus, \[ \int x \cos 2x \, dx = \frac{x \sin 2x}{2} + \frac{\cos 2x}{4} \] ### Step 5: Combine the results Now, substituting back into our expression: \[ \frac{1}{2} \left( \frac{x^2}{2} - \left( \frac{x \sin 2x}{2} + \frac{\cos 2x}{4} \right) \right) \] This simplifies to: \[ \frac{1}{2} \cdot \frac{x^2}{2} - \frac{1}{2} \cdot \frac{x \sin 2x}{2} - \frac{1}{2} \cdot \frac{\cos 2x}{4} \] \[ = \frac{x^2}{4} - \frac{x \sin 2x}{4} - \frac{\cos 2x}{8} \] ### Step 6: Final result Thus, the final result of the integral is: \[ \int x \sin^2 x \, dx = \frac{1}{8} \left( 2x^2 - 2x \sin 2x - \cos 2x \right) + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (2)(FILL IN THE BLANKS)|1 Videos
  • INTEGRATION

    ML KHANNA|Exercise SELF ASSESSMENT TESET|10 Videos
  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|1 Videos
  • INEQUALITIES

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|4 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos

Similar Questions

Explore conceptually related problems

intxsin 2x dx=

intxsin2xdx=?

intsin^3 2xdx

int sin2xdx

intsin^(2)4xdx=

int sin^(2)xdx

Evaluate the following integrals: intxsin^(2)xdx

intxsin x dx=

intxtan^2xdx=

Evaluate: intxsin2xdx