Home
Class 12
MATHS
intcossqrtxdx =...

`intcossqrtxdx =`

A

`2[sqrtxsinsqrtx +cossqrtx]`

B

`sqrtx sinsqrtx - cos sqrt x `

C

`2[sqrtxsinsqrtx - cos sqrtx]`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \cos(\sqrt{x}) \, dx \), we will use substitution and integration by parts. Here’s a step-by-step solution: ### Step 1: Substitution Let \( t = \sqrt{x} \). Then, we have: \[ x = t^2 \quad \text{and} \quad dx = 2t \, dt \] ### Step 2: Rewrite the Integral Substituting \( t \) and \( dx \) into the integral, we get: \[ \int \cos(\sqrt{x}) \, dx = \int \cos(t) \cdot 2t \, dt = 2 \int t \cos(t) \, dt \] ### Step 3: Integration by Parts Now we will use integration by parts. The formula for integration by parts is: \[ \int u \, dv = uv - \int v \, du \] Here, we can choose: - \( u = t \) (which implies \( du = dt \)) - \( dv = \cos(t) \, dt \) (which implies \( v = \sin(t) \)) ### Step 4: Apply Integration by Parts Applying the integration by parts formula: \[ 2 \int t \cos(t) \, dt = 2 \left( t \sin(t) - \int \sin(t) \, dt \right) \] Now, we need to evaluate \( \int \sin(t) \, dt \): \[ \int \sin(t) \, dt = -\cos(t) \] So, substituting back, we have: \[ 2 \left( t \sin(t) + \cos(t) \right) \] ### Step 5: Substitute Back to Original Variable Now, substituting \( t = \sqrt{x} \) back into the equation: \[ 2 \left( \sqrt{x} \sin(\sqrt{x}) + \cos(\sqrt{x}) \right) \] ### Final Answer Thus, the final answer is: \[ \int \cos(\sqrt{x}) \, dx = 2 \sqrt{x} \sin(\sqrt{x}) + 2 \cos(\sqrt{x}) + C \] where \( C \) is the constant of integration. ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (2)(FILL IN THE BLANKS)|1 Videos
  • INTEGRATION

    ML KHANNA|Exercise SELF ASSESSMENT TESET|10 Videos
  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|1 Videos
  • INEQUALITIES

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|4 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos