Home
Class 12
MATHS
Let I =int(e^(x))/(e^(4x)+e^(2x)+1)dx ,...

Let I `=int(e^(x))/(e^(4x)+e^(2x)+1)dx` , J = `int(e^(-x))/(e^(-4x)+e^(-2x)+1)dx`. Then for an arbitary constant C, the value of I - J equals

A

`1/2log((e^(4x)-e^(2x)+1)/(e^(4x+e^(2x))+1))+C`

B

`1/2log((e^(2x)+e^(x)+1)/(e^(2x)-e^(x)+1))+C`

C

`1/2log((e^(2x)-e^(x)+1)/(e^(2x)+e^(x)+1))+C`

D

`1/2log((e^(4x)+e^(2x)+1)/(e^(4x)-e^(2x)+1))`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (2)(FILL IN THE BLANKS)|1 Videos
  • INTEGRATION

    ML KHANNA|Exercise SELF ASSESSMENT TESET|10 Videos
  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|1 Videos
  • INEQUALITIES

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|4 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos

Similar Questions

Explore conceptually related problems

If I=int(e^(x))/(e^(4x)+e^(2e)+1)dx.J=int(e^(-x))/(e^(-4x)+e^(-2x)+1)dx Then for an arbitrary constant c, the value of J-I equal to

int(2e^(x))/(sqrt(4-e^(2x)))dx

int(e^(x))/((1+e^(x))(2+e^(x)))dx

int(e^(x))/(sqrt(4+e^(2x)))dx

int(e^(4x)-1)/(e^(2x))dx

int(e^(x))/((e^(x)-1)(e^(x)+2))dx=

I=int(e^(2x)-1)/(e^(2x))dx

I=int(e^x)/(e^(x)-1)dx

int (e^(2x)-1)/(e^(2x)+1) dx=?

int(dx)/(e^(x)+e^(2x))