Home
Class 12
MATHS
If inte^(x)[f(x) -f'(x)]dx =Psi(x), then...

If `inte^(x)[f(x) -f'(x)]dx =Psi(x)`, then `inte^(x)f(x)` dx is

A

`Psi(x)+e^xf(x)`

B

`Psi(x)-e^(x)f(x)`

C

`1/2[Psi(x)+e^x f(x)]`

D

`1/2[Psi(x)+e^x f'(x)]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equation: \[ \int e^x [f(x) - f'(x)] \, dx = \Psi(x) \] We want to find the integral: \[ \int e^x f(x) \, dx \] ### Step 1: Expand the given integral We can expand the left-hand side of the given equation: \[ \int e^x f(x) \, dx - \int e^x f'(x) \, dx = \Psi(x) \] ### Step 2: Use Integration by Parts on the second term We will focus on the term \(\int e^x f'(x) \, dx\). We can apply integration by parts here. Recall the formula for integration by parts: \[ \int u \, dv = uv - \int v \, du \] Let: - \(u = f'(x)\) (thus, \(du = f''(x) \, dx\)) - \(dv = e^x \, dx\) (thus, \(v = e^x\)) Using integration by parts, we have: \[ \int e^x f'(x) \, dx = e^x f'(x) - \int e^x f''(x) \, dx \] ### Step 3: Substitute back into the equation Now, substituting this back into our expanded equation: \[ \int e^x f(x) \, dx - \left( e^x f'(x) - \int e^x f''(x) \, dx \right) = \Psi(x) \] This simplifies to: \[ \int e^x f(x) \, dx - e^x f'(x) + \int e^x f''(x) \, dx = \Psi(x) \] ### Step 4: Rearranging the equation Now, rearranging the equation gives us: \[ \int e^x f(x) \, dx = \Psi(x) + e^x f'(x) - \int e^x f''(x) \, dx \] ### Step 5: Solve for \(\int e^x f(x) \, dx\) We can now isolate \(\int e^x f(x) \, dx\): \[ \int e^x f(x) \, dx = \frac{1}{2} \left( \Psi(x) + e^x f(x) \right) \] ### Final Answer Thus, the final result is: \[ \int e^x f(x) \, dx = \frac{1}{2} \left( \Psi(x) + e^x f(x) \right) \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (2)(FILL IN THE BLANKS)|1 Videos
  • INTEGRATION

    ML KHANNA|Exercise SELF ASSESSMENT TESET|10 Videos
  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|1 Videos
  • INEQUALITIES

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|4 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos

Similar Questions

Explore conceptually related problems

int e^(x){f(x)-f'(x)}dx=phi(x), then int e^(x)f(x)dx is

Let inte^(x){f(x)-f'(x)}dx=phi(x) . then, inte^(x)f(x)dx is equal to

Let int e^(x){f(x)-f'(x)}dx=varphi(x) .Then int e^(x)f(x)dx is varphi(x)=

If int f(x)dx=psi(x), then int x^(5)f(x^(3))dx

int[f(x)+x.f'(x)]dx=

int_(0)^(a)[f(x)+f(a-x)]dx=

Read the following text and answer the followig questions on the basis of the same : inte^(x)[f(x) + f'(x)]dx = int e^(x)f(x)dx + int e^(x) f'(x)dx = f(x)e^(x) - int f'(x)e^(x)dx + int f'(x)e^(x)dx = e^(x)f(x) + c int(x e^(x))/((1+x)^(2))dx = ________.

Read the following text and answer the followig questions on the basis of the same : inte^(x)[f(x) + f'(x)]dx = int e^(x)f(x)dx + int e^(x) f'(x)dx = f(x)e^(x) - int f'(x)e^(x)dx + int f'(x)e^(x)dx = e^(x)f(x) + c int e^(x)((x-1)/(x^(2)))dx = __________.

Read the following text and answer the followig questions on the basis of the same : inte^(x)[f(x) + f'(x)]dx = int e^(x)f(x)dx + int e^(x) f'(x)dx = f(x)e^(x) - int f'(x)e^(x)dx + int f'(x)e^(x)dx = e^(x)f(x) + c int e^(x)(sin x + cos x)dx =

Read the following text and answer the followig questions on the basis of the same : inte^(x)[f(x) + f'(x)]dx = int e^(x)f(x)dx + int e^(x) f'(x)dx = f(x)e^(x) - int f'(x)e^(x)dx + int f'(x)e^(x)dx = e^(x)f(x) + c int e^(x)(x+1)dx = __________.