Home
Class 12
MATHS
int(xe^x)/((x+1)^2)dx =...

`int(xe^x)/((x+1)^2)dx =`

A

`e^(x)//(x+1)`

B

`e^x//(x+1)^2`

C

`-e^x//(x+1)^3`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int \frac{x e^x}{(x+1)^2} \, dx, \] we will use substitution and integration by parts. Here’s a step-by-step solution: ### Step 1: Substitution Let \( t = x + 1 \). Then, we have: \[ x = t - 1 \quad \text{and} \quad dx = dt. \] ### Step 2: Rewrite the Integral Substituting \( x \) and \( dx \) into the integral, we get: \[ I = \int \frac{(t - 1)e^{t - 1}}{t^2} \, dt. \] ### Step 3: Simplify the Integral We can separate the integral: \[ I = \int \frac{(t - 1)e^{t - 1}}{t^2} \, dt = \int \frac{t e^{t - 1}}{t^2} \, dt - \int \frac{e^{t - 1}}{t^2} \, dt. \] This simplifies to: \[ I = \int \frac{e^{t - 1}}{t} \, dt - \int \frac{e^{t - 1}}{t^2} \, dt. \] ### Step 4: Integration by Parts Now, we will solve the first integral using integration by parts. Let: - \( u = \frac{1}{t} \) so that \( du = -\frac{1}{t^2} dt \), - \( dv = e^{t - 1} dt \) so that \( v = e^{t - 1} \). Using the integration by parts formula \( \int u \, dv = uv - \int v \, du \), we have: \[ \int \frac{e^{t - 1}}{t} \, dt = \frac{e^{t - 1}}{t} - \int e^{t - 1} \left(-\frac{1}{t^2}\right) dt. \] This gives us: \[ \int \frac{e^{t - 1}}{t} \, dt = \frac{e^{t - 1}}{t} + \int \frac{e^{t - 1}}{t^2} \, dt. \] ### Step 5: Combine the Integrals Now substituting back into the expression for \( I \): \[ I = \left( \frac{e^{t - 1}}{t} + \int \frac{e^{t - 1}}{t^2} \, dt \right) - \int \frac{e^{t - 1}}{t^2} \, dt. \] The integrals \( \int \frac{e^{t - 1}}{t^2} \, dt \) cancel out: \[ I = \frac{e^{t - 1}}{t}. \] ### Step 6: Substitute Back Now substituting back \( t = x + 1 \): \[ I = \frac{e^{(x + 1) - 1}}{x + 1} = \frac{e^x}{x + 1}. \] ### Final Answer Thus, the solution to the integral is: \[ \int \frac{x e^x}{(x + 1)^2} \, dx = \frac{e^x}{x + 1} + C, \] where \( C \) is the constant of integration.
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (2)(FILL IN THE BLANKS)|1 Videos
  • INTEGRATION

    ML KHANNA|Exercise SELF ASSESSMENT TESET|10 Videos
  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|1 Videos
  • INEQUALITIES

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|4 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos

Similar Questions

Explore conceptually related problems

int(xe^x)/(1+x)^2dx

int(xe^(x))/((1+x)^(2))dx is equal to

Evaluste int(xe^(x))/((1+x)^(2))dx

Evaluate int(xe^(x))/((1+x)^(2))dx

int(xe^(x))/((x+2)^(3))dx=

int_(0)^(1)(xe^(x))/((x+1)^(2))dx

int(xe^(2x))/((1+2x)^(2))dx

int(xe^(2x))/((1+2x)^(2))dx

int xe^(-x)dx