Home
Class 12
MATHS
inte^x[log (sec x +tan x)+sec x]dx =...

`inte^x[log (sec x +tan x)+sec x]dx = `

A

`e^x log tan x + c`

B

`e^x log (sec x + tan x)+c`

C

`e^x log sec x+c`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int e^x \left( \log(\sec x + \tan x) + \sec x \right) dx \), we can break it down into two parts: 1. **Separate the integral**: \[ \int e^x \left( \log(\sec x + \tan x) + \sec x \right) dx = \int e^x \log(\sec x + \tan x) \, dx + \int e^x \sec x \, dx \] 2. **Focus on the second integral**: We will use integration by parts for the integral \( \int e^x \sec x \, dx \). Recall the integration by parts formula: \[ \int u \, dv = uv - \int v \, du \] Here, we can choose: - \( u = \sec x \) (which we will differentiate) - \( dv = e^x dx \) (which we will integrate) 3. **Differentiate and integrate**: - Differentiate \( u \): \[ du = \sec x \tan x \, dx \] - Integrate \( dv \): \[ v = e^x \] 4. **Apply integration by parts**: Now, substituting into the integration by parts formula: \[ \int e^x \sec x \, dx = e^x \sec x - \int e^x \sec x \tan x \, dx \] 5. **Combine the results**: Now, we can substitute back into our original integral: \[ \int e^x \left( \log(\sec x + \tan x) + \sec x \right) dx = \int e^x \log(\sec x + \tan x) \, dx + \left( e^x \sec x - \int e^x \sec x \tan x \, dx \right) \] 6. **Notice the cancellation**: The integral \( \int e^x \sec x \tan x \, dx \) appears in both the positive and negative terms, allowing us to cancel them: \[ \int e^x \log(\sec x + \tan x) \, dx + e^x \sec x \] 7. **Final result**: Thus, we have: \[ \int e^x \left( \log(\sec x + \tan x) + \sec x \right) dx = e^x \log(\sec x + \tan x) + C \] ### Final Answer: \[ \int e^x \left( \log(\sec x + \tan x) + \sec x \right) dx = e^x \log(\sec x + \tan x) + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (2)(FILL IN THE BLANKS)|1 Videos
  • INTEGRATION

    ML KHANNA|Exercise SELF ASSESSMENT TESET|10 Videos
  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|1 Videos
  • INEQUALITIES

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|4 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos

Similar Questions

Explore conceptually related problems

log (sec 2x +tan 2 x)

(i) int e^(x). "[log (sec x+tan x) + sec x dx " (ii) int (e^(-x)(cos x-sin x))/(cos^(2) x) dx

int secx. log (sec x+ tan x ) dx

int sec x log (sec x+tan x) dx.

int e^(2log sec x)dx

int sec x (sec x + tanx ) dx =

int e^x (tan x+1) sec x dx

int e^(x)sec x(1+tan x)dx

int(sec xxxtan x)dx=sec x