Home
Class 12
MATHS
If int[(1+x)e^x f(x) +xe^x f'(x)] dx =e^...

If `int[(1+x)e^x f(x) +xe^x f'(x)] dx =e^x` then f (x) =

A

1

B

x

C

`1//x`

D

`e^x`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ \int \left[(1+x)e^x f(x) + xe^x f'(x)\right] dx = e^x, \] we will use integration by parts and properties of integrals. Let's break this down step by step. ### Step 1: Rewrite the Integral We can separate the integral into two parts: \[ \int (1+x)e^x f(x) \, dx + \int xe^x f'(x) \, dx = e^x. \] ### Step 2: Apply Integration by Parts For the second integral \(\int xe^x f'(x) \, dx\), we will apply integration by parts. Let: - \(u = x\) (which means \(du = dx\)) - \(dv = e^x f'(x) dx\) (which means \(v = e^x f(x)\)) Using integration by parts, we have: \[ \int u \, dv = uv - \int v \, du. \] Thus, \[ \int xe^x f'(x) \, dx = x e^x f(x) - \int e^x f(x) \, dx. \] ### Step 3: Substitute Back Now, substituting this back into the original equation, we have: \[ \int (1+x)e^x f(x) \, dx + \left[x e^x f(x) - \int e^x f(x) \, dx\right] = e^x. \] ### Step 4: Combine the Integrals Now, combine the integrals: \[ \int (1+x)e^x f(x) \, dx + x e^x f(x) - \int e^x f(x) \, dx = e^x. \] ### Step 5: Simplify the Equation Notice that the integral terms can be simplified. The integral \(\int e^x f(x) \, dx\) appears on both sides of the equation. Thus, we can cancel them out: \[ \int (1+x)e^x f(x) \, dx + x e^x f(x) - \int e^x f(x) \, dx = e^x. \] This simplifies to: \[ \int (1+x)e^x f(x) \, dx = e^x - x e^x f(x). \] ### Step 6: Solve for \(f(x)\) Now, we can isolate \(f(x)\): \[ (1+x)e^x f(x) = e^x. \] Dividing both sides by \(e^x (1+x)\): \[ f(x) = \frac{e^x}{(1+x)e^x} = \frac{1}{1+x}. \] Thus, the solution for \(f(x)\) is: \[ f(x) = \frac{1}{1+x}. \] ### Final Answer \[ f(x) = \frac{1}{1+x}. \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (2)(FILL IN THE BLANKS)|1 Videos
  • INTEGRATION

    ML KHANNA|Exercise SELF ASSESSMENT TESET|10 Videos
  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|1 Videos
  • INEQUALITIES

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|4 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos

Similar Questions

Explore conceptually related problems

If f(x)=x.e^(x(1-x), then f(x) is

If int x f (x) dx = (f (x))/( 2) then f (x) = e ^(x ^(2))

Knowledge Check

  • If (d)/(dx) [f (x) ]=e^(-x) f(x) +e^x f(-x) then f (x) is (given f (0)=0)

    A
    even
    B
    odd
    C
    neither even nor odd
    D
    can't say
  • If inte^(x)[f(x) -f'(x)]dx =Psi(x) , then inte^(x)f(x) dx is

    A
    `Psi(x)+e^xf(x)`
    B
    `Psi(x)-e^(x)f(x)`
    C
    `1/2[Psi(x)+e^x f(x)]`
    D
    `1/2[Psi(x)+e^x f'(x)]`
  • If int x^(2) e^(3x) dx = e^(3x)/27 f(x) +c , then f(x)=

    A
    `9x^(2) + 6x +2`
    B
    `9x^(2) - 6x +2`
    C
    `9x^(2) + 6x +2`
    D
    `9x^(2) - 6x -2`
  • Similar Questions

    Explore conceptually related problems

    Assertion (A) : int(e^(x))/(x) (1 + x log x) dx = e^(x) log x +c. Reason (R) : int e^(x) [f(x) + f'(x)] dx = e^(x) f(x) + c

    If (d(f(x)))/(dx) = e^(-x) f(x) + e^(x) f(-x) , then f(x) is, (given f(0) = 0)

    int(e^x (1 + x))/(cos^2 (xe^x)) dx =

    If inte^x(1+x).sec^2(xe^x)dx=f(x)+C , then f(x) is equal to

    Read the following text and answer the followig questions on the basis of the same : inte^(x)[f(x) + f'(x)]dx = int e^(x)f(x)dx + int e^(x) f'(x)dx = f(x)e^(x) - int f'(x)e^(x)dx + int f'(x)e^(x)dx = e^(x)f(x) + c int(x e^(x))/((1+x)^(2))dx = ________.