Home
Class 12
MATHS
int4^x[g'(x)+g(x)log4]dx =...

`int4^x[g'(x)+g(x)log4]dx =`

A

`4^x/(log4)g(x)`

B

`4^x`

C

`4^xlog4.g(x)`

D

`4^xg(x)`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (2)(FILL IN THE BLANKS)|1 Videos
  • INTEGRATION

    ML KHANNA|Exercise SELF ASSESSMENT TESET|10 Videos
  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|1 Videos
  • INEQUALITIES

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|4 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos

Similar Questions

Explore conceptually related problems

int(f(x)g'(x)+g(x)f'(x))/(f(x)g(x))[logf(x)+logg(x)]dx=

int{f(x)g'(x)-f'g(x)}dx equals

int2^(log_(4)x)dx

If (d)/(dx)[g(x)]=f(x) , then : int_(a)^(b)f(x)g(x)dx=

int(f(x)*g'(x)-f'(x)g(x))/(f(x)*g(x)){log g(x)-log f(x)}dx

If f(x)=f(4-x), g(x)+g(4-x)=3 and int_(0)^(4)f(x)dx=2 , then : int_(0)^(4)f(x)g(x)dx=

Let f,g, h be 3 functions such that f(x)gt0 and g(x)gt0, AA x in R where int f(x)*g(x)dx=(x^(4))/(4)+C and int(f(x))/(g(x))dx=int(g(x))/(h(x))dx=ln|x|+C . On the basis of above information answer the following questions: int f(x)*g(x)*h(x)dx is equal to

Let f(x)=f(a-x) and g(x)+g(a-x)=4 then int_0^af(x)g(x)dx is equal to (A) 2int_0^af(x)dx (B) int_0^af(x)dx (C) 4int_0^af(x)dx (D) 0

Show that int_(0)^(a)f(x)g(x)dx=2int_(0)^(a)f(x)dx if f and g defined as f(x)=f(a-x) and g(x)quad +g(a-x)=4