Home
Class 12
MATHS
e^(tan^(-1)x)((1+x+x^2)/(1+x^2))dx is eq...

`e^(tan^(-1)x)((1+x+x^2)/(1+x^2))dx` is equal to

A

`xe^(tan^(-1)x)+c`

B

`x^2e^(tan^(-1)x)+c`

C

`1/xe^(tan^(-1)x)+c`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int e^{\tan^{-1} x} \frac{1 + x + x^2}{1 + x^2} \, dx \), we can follow these steps: ### Step 1: Simplify the integrand We start with the integrand: \[ e^{\tan^{-1} x} \cdot \frac{1 + x + x^2}{1 + x^2} \] We can separate the fraction: \[ \frac{1 + x + x^2}{1 + x^2} = \frac{1 + x^2}{1 + x^2} + \frac{x}{1 + x^2} = 1 + \frac{x}{1 + x^2} \] Thus, the integral becomes: \[ \int e^{\tan^{-1} x} \left( 1 + \frac{x}{1 + x^2} \right) \, dx \] ### Step 2: Break the integral into two parts Now we can split the integral: \[ \int e^{\tan^{-1} x} \, dx + \int e^{\tan^{-1} x} \cdot \frac{x}{1 + x^2} \, dx \] ### Step 3: Solve the first integral The first integral is: \[ \int e^{\tan^{-1} x} \, dx \] To solve this, we can use the substitution \( u = \tan^{-1} x \), which gives \( x = \tan u \) and \( dx = \sec^2 u \, du \). Thus, we have: \[ e^{\tan^{-1} x} = e^u \] And the integral becomes: \[ \int e^u \sec^2 u \, du \] ### Step 4: Solve the second integral For the second integral: \[ \int e^{\tan^{-1} x} \cdot \frac{x}{1 + x^2} \, dx \] Using the same substitution \( u = \tan^{-1} x \), we have: \[ \frac{x}{1 + x^2} = \frac{\tan u}{1 + \tan^2 u} = \sin u \] Thus, this integral becomes: \[ \int e^u \sin u \, du \] ### Step 5: Combine the results Now we have two integrals to solve: 1. \( \int e^u \sec^2 u \, du \) 2. \( \int e^u \sin u \, du \) These integrals can be solved using integration by parts or known integral formulas. ### Final Step: Write the final answer After solving both integrals, we combine the results and substitute back \( u = \tan^{-1} x \) to express the final answer in terms of \( x \).
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (2)(FILL IN THE BLANKS)|1 Videos
  • INTEGRATION

    ML KHANNA|Exercise SELF ASSESSMENT TESET|10 Videos
  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|1 Videos
  • INEQUALITIES

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|4 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos

Similar Questions

Explore conceptually related problems

int e^(tan^(-1)x)((1)/(1+x^(2)))dx=

int((tan^(-1)x)^(3))/(1+x^(2))dx is equal to

int e^(tan^(-1)x)(1+x+x^(2))d(cot^(-1)x) is equal to -e^(tan^(-1)x)+c(b)e^(tan^(-1)x)+c-xe^(tan^(-1)x)+c(d)xe^(tan-1)x+c

int e^(tan^(-1)x)((1+x+x^(2))/(1+x^(2)))dx

int ((x^(2)+2)(a^((x+tan^(-1)x)))/(x^(2)+1)) dx is equal to

int e^(tan^(-1)x)(1+x+x^(2))d(cot^(-1)x) is equal to

int e^(tan^(1)x)(1+(x)/(1+x^(2)))dx

What is int_(0)^(1) (e^(tan^(-1))x dx)/(1+x^(2)) equal to

int(e^(tan^(-1)x))/((1+x^(2))^(2))dx

int e^(tan^(-1)x)*((1+x+x^(2))/(1+x^(2)))dx