Home
Class 12
MATHS
int0^(pi//2)(sinxcosx)/(cos^2x+3cosx+2)d...

`int_0^(pi//2)(sinxcosx)/(cos^2x+3cosx+2)dx=`

A

`log (9//8)`

B

`log (8//9)`

C

`log(3//4)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_0^{\frac{\pi}{2}} \frac{\sin x \cos x}{\cos^2 x + 3 \cos x + 2} \, dx, \] we will use substitution and partial fractions. ### Step 1: Substitution Let \( t = \cos x \). Then, \( dt = -\sin x \, dx \) or \( \sin x \, dx = -dt \). The limits change as follows: - When \( x = 0 \), \( t = \cos(0) = 1 \). - When \( x = \frac{\pi}{2} \), \( t = \cos\left(\frac{\pi}{2}\right) = 0 \). Thus, the integral becomes: \[ I = \int_1^0 \frac{-t}{t^2 + 3t + 2} \, dt = \int_0^1 \frac{t}{t^2 + 3t + 2} \, dt. \] ### Step 2: Factor the Denominator We need to factor the denominator \( t^2 + 3t + 2 \): \[ t^2 + 3t + 2 = (t + 1)(t + 2). \] ### Step 3: Partial Fraction Decomposition We can express the integrand using partial fractions: \[ \frac{t}{(t + 1)(t + 2)} = \frac{A}{t + 1} + \frac{B}{t + 2}. \] Multiplying through by the denominator \( (t + 1)(t + 2) \): \[ t = A(t + 2) + B(t + 1). \] Expanding and rearranging gives: \[ t = At + 2A + Bt + B \implies t = (A + B)t + (2A + B). \] Setting coefficients equal, we have: 1. \( A + B = 1 \) 2. \( 2A + B = 0 \) From the first equation, \( B = 1 - A \). Substituting into the second equation: \[ 2A + (1 - A) = 0 \implies A + 1 = 0 \implies A = -1. \] Then, substituting back to find \( B \): \[ B = 1 - (-1) = 2. \] Thus, we have: \[ \frac{t}{(t + 1)(t + 2)} = \frac{-1}{t + 1} + \frac{2}{t + 2}. \] ### Step 4: Integrate Now we can integrate: \[ I = \int_0^1 \left( \frac{-1}{t + 1} + \frac{2}{t + 2} \right) dt. \] This can be split into two integrals: \[ I = -\int_0^1 \frac{1}{t + 1} \, dt + 2 \int_0^1 \frac{1}{t + 2} \, dt. \] Calculating each integral: 1. For the first integral: \[ -\int_0^1 \frac{1}{t + 1} \, dt = -[\log(t + 1)]_0^1 = -(\log(2) - \log(1)) = -\log(2). \] 2. For the second integral: \[ 2 \int_0^1 \frac{1}{t + 2} \, dt = 2[\log(t + 2)]_0^1 = 2(\log(3) - \log(2)) = 2\log\left(\frac{3}{2}\right). \] ### Step 5: Combine Results Combining these results gives: \[ I = -\log(2) + 2\log\left(\frac{3}{2}\right) = -\log(2) + \log(3^2) - \log(2^2) = -\log(2) + \log(9) - \log(4). \] This simplifies to: \[ I = \log\left(\frac{9}{4}\right) - \log(2) = \log\left(\frac{9}{8}\right). \] ### Final Answer Thus, the final result is: \[ I = \log\left(\frac{9}{8}\right). \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (2)(FILL IN THE BLANKS)|1 Videos
  • INTEGRATION

    ML KHANNA|Exercise SELF ASSESSMENT TESET|10 Videos
  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|1 Videos
  • INEQUALITIES

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|4 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following integral: int_0^(pi//2)(s in x cos x)/(cos^2x+3cos x+2)dx

Evaluate int_0^(pi/2) (sinx-cosx)/(1+sinxcosx)dx

Evaluate the following : int_(0)^(pi//2)(sinx-cosx)/(1+sinx.cosx)dx

int_0^(pi/2) (sinx)/(1+Cos^2x)dx

int_(0)^(pi//2) (cosx)/(3cos x+ sin x ) dx=

int_(0)^(pi//2)((sinx-cosx))/((1+sinxcosx))dx=0

int_(0)^(pi//2)(sin x cos x dx)/(cos^(2)x+3cosx+2)=

Evaluate the following integral: int_0^(pi//2)(sinxcosx)/(1+sin^4x)dx