Home
Class 12
MATHS
int0^(64)[{x^(1//3)}-{sqrtx}]dx = ........

`int_0^(64)[{x^(1//3)}-{sqrtx}]dx = .....`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_0^{64} \left( x^{\frac{1}{3}} - \sqrt{x} \right) dx \), we will follow these steps: ### Step 1: Set up the integral We need to evaluate the integral from 0 to 64 of the function \( x^{\frac{1}{3}} - \sqrt{x} \). \[ \int_0^{64} \left( x^{\frac{1}{3}} - x^{\frac{1}{2}} \right) dx \] ### Step 2: Integrate each term separately We will integrate \( x^{\frac{1}{3}} \) and \( -\sqrt{x} \) separately. 1. **Integrate \( x^{\frac{1}{3}} \)**: \[ \int x^{\frac{1}{3}} dx = \frac{x^{\frac{1}{3} + 1}}{\frac{1}{3} + 1} = \frac{x^{\frac{4}{3}}}{\frac{4}{3}} = \frac{3}{4} x^{\frac{4}{3}} \] 2. **Integrate \( -\sqrt{x} \)**: \[ \int -\sqrt{x} dx = -\int x^{\frac{1}{2}} dx = -\frac{x^{\frac{1}{2} + 1}}{\frac{1}{2} + 1} = -\frac{x^{\frac{3}{2}}}{\frac{3}{2}} = -\frac{2}{3} x^{\frac{3}{2}} \] ### Step 3: Combine the results Now we combine the results of the integrals: \[ \int \left( x^{\frac{1}{3}} - \sqrt{x} \right) dx = \frac{3}{4} x^{\frac{4}{3}} - \frac{2}{3} x^{\frac{3}{2}} \] ### Step 4: Evaluate the definite integral from 0 to 64 Now we will evaluate the combined integral from 0 to 64: \[ \left[ \frac{3}{4} x^{\frac{4}{3}} - \frac{2}{3} x^{\frac{3}{2}} \right]_0^{64} \] 1. **Evaluate at the upper limit (64)**: \[ \frac{3}{4} (64)^{\frac{4}{3}} - \frac{2}{3} (64)^{\frac{3}{2}} \] - Calculate \( (64)^{\frac{4}{3}} \): \[ (64)^{\frac{4}{3}} = (4^3)^{\frac{4}{3}} = 4^4 = 256 \] - Calculate \( (64)^{\frac{3}{2}} \): \[ (64)^{\frac{3}{2}} = (8^2)^{\frac{3}{2}} = 8^3 = 512 \] Now substituting these values: \[ \frac{3}{4} \cdot 256 - \frac{2}{3} \cdot 512 = 192 - \frac{1024}{3} \] 2. **Evaluate at the lower limit (0)**: \[ \frac{3}{4} (0)^{\frac{4}{3}} - \frac{2}{3} (0)^{\frac{3}{2}} = 0 \] ### Step 5: Final calculation Now we combine the results: \[ 192 - \frac{1024}{3} = \frac{576}{3} - \frac{1024}{3} = \frac{576 - 1024}{3} = \frac{-448}{3} \] ### Final Answer Thus, the value of the integral is: \[ \int_0^{64} \left( x^{\frac{1}{3}} - \sqrt{x} \right) dx = -\frac{448}{3} \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (2)(FILL IN THE BLANKS)|1 Videos
  • INTEGRATION

    ML KHANNA|Exercise SELF ASSESSMENT TESET|10 Videos
  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|1 Videos
  • INEQUALITIES

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|4 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(64){x^((1)/(3))}dx

int_0^1 (dx)/(sqrt(1+x)-sqrtx)

int_(0)^(4)1/(1+sqrtx)dx =…..

If I=int_(0)^(16)(x^((1)/(4)))/(1+sqrtx)dx=k+4tan^(-1)m , then 3k-m is equal to

(8) int(1/(sqrtx)-sqrtx)dx

int(1)/(sqrtx+x)dx=

int(1)/(1+sqrtx)dx=

int1/(sqrtx(1-sqrtx)dx=