Home
Class 12
MATHS
int(sin^(-1)sqrtx-cos^(-1)sqrtx)/(sin^(-...

`int(sin^(-1)sqrtx-cos^(-1)sqrtx)/(sin^(-1)sqrtx+cos^(-1)sqrtx)dx=`

A

`2/pi[sqrt((x-x^2))+(1-2x)sin^(-1)sqrtx]+x`

B

`2/pi[sqrt((x-x^2))-(1-2x)sin^(-1)sqrtx]-x`

C

`2/pi[sqrt((x-x^2))+(1-2x)sin^(-1)sqrtx]-x`

D

None

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int \frac{\sin^{-1}(\sqrt{x}) - \cos^{-1}(\sqrt{x})}{\sin^{-1}(\sqrt{x}) + \cos^{-1}(\sqrt{x})} \, dx \] we start by recognizing a key identity involving inverse trigonometric functions. We know that: \[ \sin^{-1}(y) + \cos^{-1}(y) = \frac{\pi}{2} \] for any \(y\). In our case, \(y = \sqrt{x}\). Therefore, we can rewrite the denominator: \[ \sin^{-1}(\sqrt{x}) + \cos^{-1}(\sqrt{x}) = \frac{\pi}{2} \] Substituting this into our integral, we have: \[ I = \int \frac{\sin^{-1}(\sqrt{x}) - \cos^{-1}(\sqrt{x})}{\frac{\pi}{2}} \, dx = \frac{2}{\pi} \int \left( \sin^{-1}(\sqrt{x}) - \cos^{-1}(\sqrt{x}) \right) \, dx \] Next, we will break this integral into two parts: \[ I = \frac{2}{\pi} \left( I_1 - I_2 \right) \] where \[ I_1 = \int \sin^{-1}(\sqrt{x}) \, dx \] and \[ I_2 = \int \cos^{-1}(\sqrt{x}) \, dx \] ### Step 1: Solve \(I_1\) For \(I_1\), we will use the substitution \(u = \sqrt{x}\), which gives \(x = u^2\) and \(dx = 2u \, du\). Therefore: \[ I_1 = \int \sin^{-1}(u) \cdot 2u \, du = 2 \int u \sin^{-1}(u) \, du \] Using integration by parts, let \(v = \sin^{-1}(u)\) and \(dw = u \, du\). Then, \(dv = \frac{1}{\sqrt{1-u^2}} \, du\) and \(w = \frac{u^2}{2}\). Applying integration by parts: \[ \int u \sin^{-1}(u) \, du = \frac{u^2}{2} \sin^{-1}(u) - \int \frac{u^2}{2} \cdot \frac{1}{\sqrt{1-u^2}} \, du \] Now we need to solve the remaining integral. ### Step 2: Solve \(I_2\) For \(I_2\), we will also use the same substitution \(u = \sqrt{x}\): \[ I_2 = \int \cos^{-1}(u) \cdot 2u \, du = 2 \int u \cos^{-1}(u) \, du \] Using integration by parts again, let \(v = \cos^{-1}(u)\) and \(dw = u \, du\). Then, \(dv = -\frac{1}{\sqrt{1-u^2}} \, du\) and \(w = \frac{u^2}{2}\). Applying integration by parts: \[ \int u \cos^{-1}(u) \, du = \frac{u^2}{2} \cos^{-1}(u) + \int \frac{u^2}{2} \cdot \frac{1}{\sqrt{1-u^2}} \, du \] ### Step 3: Combine Results Now we can combine the results of \(I_1\) and \(I_2\): \[ I = \frac{2}{\pi} \left( 2 \left( \frac{u^2}{2} \sin^{-1}(u) - \int \frac{u^2}{2} \cdot \frac{1}{\sqrt{1-u^2}} \, du \right) - 2 \left( \frac{u^2}{2} \cos^{-1}(u) + \int \frac{u^2}{2} \cdot \frac{1}{\sqrt{1-u^2}} \, du \right) \right) \] After simplification, we find that the integrals involving \(\frac{u^2}{2} \cdot \frac{1}{\sqrt{1-u^2}}\) will cancel out, leading us to a final expression. ### Final Result After substituting back \(u = \sqrt{x}\), we can express the final result in terms of \(x\): \[ I = \frac{2}{\pi} \left( \sin^{-1}(\sqrt{x}) - \cos^{-1}(\sqrt{x}) \right) + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (2)(FILL IN THE BLANKS)|1 Videos
  • INTEGRATION

    ML KHANNA|Exercise SELF ASSESSMENT TESET|10 Videos
  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|1 Videos
  • INEQUALITIES

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|4 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos

Similar Questions

Explore conceptually related problems

(sin^(-1)sqrtx-cos^(-1)sqrtx)/(sin^(-1)sqrt(x)+cos^(-1)sqrtx)

int (sin^-1sqrtx-cos^-1 sqrtx)/(sin^-1 sqrtx+ cos^-1 sqrtx)

f(x)=sqrtx-(1)/(sqrtx)

int1/(sqrtx(1-sqrtx)dx=

int(1)/(sqrt(1+sqrtx))dx=

Find (dy)/(dx)" if y=sin"^(-1) ((sqrtx-1)/(sqrtx+1))+sec^(-1) ((sqrtx+1)/(sqrtx-1))

int ((1+sqrtx)^2)/sqrtx dx=

int(1)/(1+sqrtx)dx=

tan^(-1)(cos sqrtx)

int(1)/(sqrtx+x)dx=