Home
Class 12
MATHS
The value of the integral int1^e(logx)^3...

The value of the integral `int_1^e(logx)^3` dx is

A

`6+2e`

B

`6-2e`

C

`2e-6`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_1^e (\log x)^3 \, dx \), we will use integration by parts. ### Step-by-Step Solution: 1. **Identify the parts for integration by parts**: We choose: - \( u = (\log x)^3 \) (which we will differentiate) - \( dv = dx \) (which we will integrate) 2. **Differentiate and integrate**: - Differentiate \( u \): \[ du = 3(\log x)^2 \cdot \frac{1}{x} \, dx = \frac{3(\log x)^2}{x} \, dx \] - Integrate \( dv \): \[ v = x \] 3. **Apply the integration by parts formula**: The formula is given by: \[ \int u \, dv = uv - \int v \, du \] Substituting our values: \[ \int (\log x)^3 \, dx = x(\log x)^3 - \int x \cdot \frac{3(\log x)^2}{x} \, dx \] Simplifying the integral: \[ = x(\log x)^3 - 3 \int (\log x)^2 \, dx \] 4. **Now we need to evaluate \( \int (\log x)^2 \, dx \)** using integration by parts again: - Let \( u = (\log x)^2 \) and \( dv = dx \). - Then, \( du = 2 \log x \cdot \frac{1}{x} \, dx = \frac{2 \log x}{x} \, dx \) and \( v = x \). - Applying integration by parts: \[ \int (\log x)^2 \, dx = x(\log x)^2 - \int x \cdot \frac{2 \log x}{x} \, dx \] Simplifying: \[ = x(\log x)^2 - 2 \int \log x \, dx \] 5. **Now we need to evaluate \( \int \log x \, dx \)**: - Let \( u = \log x \) and \( dv = dx \). - Then, \( du = \frac{1}{x} \, dx \) and \( v = x \). - Applying integration by parts: \[ \int \log x \, dx = x \log x - \int x \cdot \frac{1}{x} \, dx = x \log x - x \] 6. **Putting it all together**: Now substituting back: \[ \int (\log x)^2 \, dx = x(\log x)^2 - 2(x \log x - x) = x(\log x)^2 - 2x \log x + 2x \] 7. **Substituting back into the integral of \( (\log x)^3 \)**: \[ \int (\log x)^3 \, dx = x(\log x)^3 - 3\left[x(\log x)^2 - 2x \log x + 2x\right] \] Simplifying: \[ = x(\log x)^3 - 3x(\log x)^2 + 6x \log x - 6x \] 8. **Evaluate from 1 to \( e \)**: \[ \int_1^e (\log x)^3 \, dx = \left[ x(\log x)^3 - 3x(\log x)^2 + 6x \log x - 6x \right]_1^e \] - **Upper limit \( x = e \)**: \[ = e(1)^3 - 3e(1)^2 + 6e(1) - 6e = e - 3e + 6e - 6e = -2e \] - **Lower limit \( x = 1 \)**: \[ = 1(0)^3 - 3(1)(0)^2 + 6(1)(0) - 6(1) = -6 \] Now, combining: \[ = (-2e) - (-6) = -2e + 6 \] ### Final Result: The value of the integral \( \int_1^e (\log x)^3 \, dx \) is: \[ 6 - 2e \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (2)(FILL IN THE BLANKS)|1 Videos
  • INTEGRATION

    ML KHANNA|Exercise SELF ASSESSMENT TESET|10 Videos
  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|1 Videos
  • INEQUALITIES

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|4 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos

Similar Questions

Explore conceptually related problems

The value of integral int_(1)^(e) (log x)^(3)dx , is

The value of the integral int_(1//e)^(e) |logx|dx , is

If the value of the integral int_(1)^(2)e^(x^(2))dx is alpha, then the value of int_(e)^(e^(4))sqrt(ln x)dx is:

The value of the integral int_(0)^(log5)(e^(x)sqrt(e^(x)-1))/(e^(x)+3)dx

The value of the integral int_0^(log5) (e^(x)sqrt(e^(x)-1))/(e^(x)+3)dx , is

The value of the integral int(e^(5logx)-e^(4logx))/(e^(3logx)-e^(2logx))dx is equal to (A) x^2+c (B) x^3/3+c (C) x^2/2+c (D) none of these

The value of the integral int_(1)^(2)e^(x)(log_(e)x+(x+1)/(x))dx is

The value of the integral int_(0)^(1) e^(x^(2))dx lies in the integral