Home
Class 12
MATHS
I(m,n)=int0^1x^m(logx)^ndx =...

`I_(m,n)=int_0^1x^m(logx)^ndx =`

A

`n/(n+1)I_(m,n-1)`

B

`-m/(n+1)I_(m,n-1)`

C

`-n/(m+1)I_(m,n-1)`

D

`m/(n+1)I_(m,n-1)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I_{m,n} = \int_0^1 x^m (\log x)^n \, dx \), we will use integration by parts. Here are the steps: ### Step 1: Set up integration by parts We will use the integration by parts formula: \[ \int u \, dv = uv - \int v \, du \] Let: - \( u = (\log x)^n \) (which we will differentiate) - \( dv = x^m \, dx \) (which we will integrate) ### Step 2: Differentiate \( u \) and integrate \( dv \) Now, we differentiate \( u \) and integrate \( dv \): - \( du = n (\log x)^{n-1} \cdot \frac{1}{x} \, dx = \frac{n (\log x)^{n-1}}{x} \, dx \) - \( v = \int x^m \, dx = \frac{x^{m+1}}{m+1} \) ### Step 3: Apply integration by parts Now substitute into the integration by parts formula: \[ I_{m,n} = \left[ (\log x)^n \cdot \frac{x^{m+1}}{m+1} \right]_0^1 - \int_0^1 \frac{x^{m+1}}{m+1} \cdot \frac{n (\log x)^{n-1}}{x} \, dx \] This simplifies to: \[ I_{m,n} = \left[ \frac{(\log x)^n \cdot x^{m+1}}{m+1} \right]_0^1 - \frac{n}{m+1} \int_0^1 x^m (\log x)^{n-1} \, dx \] ### Step 4: Evaluate the boundary terms Now we evaluate the boundary terms: - At \( x = 1 \): \( \log(1) = 0 \) so \( (\log 1)^n \cdot \frac{1^{m+1}}{m+1} = 0 \) - At \( x = 0 \): \( \lim_{x \to 0} (\log x)^n \cdot \frac{x^{m+1}}{m+1} \) tends to \( 0 \) for \( m \geq 0 \) (as \( x^{m+1} \) goes to \( 0 \) faster than \( (\log x)^n \) diverges). Thus, the boundary terms contribute \( 0 \): \[ I_{m,n} = 0 - \frac{n}{m+1} I_{m,n-1} \] This leads us to: \[ I_{m,n} = -\frac{n}{m+1} I_{m,n-1} \] ### Final Result The final expression for the integral is: \[ I_{m,n} = -\frac{n}{m+1} I_{m,n-1} \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (2)(FILL IN THE BLANKS)|1 Videos
  • INTEGRATION

    ML KHANNA|Exercise SELF ASSESSMENT TESET|10 Videos
  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|1 Videos
  • INEQUALITIES

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|4 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos

Similar Questions

Explore conceptually related problems

Let I_(n) = int_(0)^(1) (logx)^(n)dx , where n is a non-negative integer. Then I_(2001) - 2011 I_(2010) is equal to -

if I_(m,n)=int(x^(m))/((log x)^(n))dx, then (m+1)I_(m,n)-nI_(m,n+1) is

If I_(m,n)= int_(0)^(1) x^(m) (ln x)^(n) dx then I_(m,n) is also equal to

If I_(m)=int_(1)^(x) (log x)^(m)dx satisfies the relation I_m = k-lI_(m-1) then,

If I(m,n)=int_(0)^(1)x^(m-1)(1-x)^(n-1)dx,(m,n in I,m,n>=0),th epsilonI(m,n)=int_(0)^(oo)(x^(m-1))/((1+x)^(m-n))dxI(m,n)=int_(0)^(oo)(x^(m-1))/((1+x)^(m+n))dxI(m,n)=int_(0)^(oo)(x^(n-1))/((1+x)^(m+n))dxI(m,n)=int_(0)^(oo)(x^(n))/((1+x)^(m+n))dx

If I(m,n)=int_(0)^(1)x^(m-1)(1-x)^(n-1)dx, then

If I_(n)=int_(1)^(e)(ln x)^(n)dx(n is a natural number) then I_(2020)+nI_(m)=e, where n,m in N .The value of m+n is equal to

Given I_(m)=int_(1)^(e)(log x)^(m)dx, then prove that (I_(m))/(1-m)+mI_(m-2)=e