Home
Class 12
MATHS
If I(m,n)=int0^1t^m(1+t)^ndt,m,n,inR , t...

If `I(m,n)=int_0^1t^m(1+t)^ndt,m,n,inR` , then I (m,n) is

A

`n/(1+m)I["(m+1)",(n-1)]`

B

`m/(n+1)I["(m+1)",(n-1)]`

C

`2^n/(1+m)-n/(1+m)I["(m+1)",(n-1)]`

D

`2^n/(1+m)-m/(1+n)I["(m+1)",(n-1)]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I(m,n) = \int_0^1 t^m (1+t)^n \, dt \), we will use integration by parts. Here’s a step-by-step solution: ### Step 1: Set up the integration by parts We will use the integration by parts formula: \[ \int u \, dv = uv - \int v \, du \] Let: - \( u = (1+t)^n \) (which we will differentiate) - \( dv = t^m \, dt \) (which we will integrate) ### Step 2: Differentiate and integrate Now, we need to compute \( du \) and \( v \): - Differentiate \( u \): \[ du = n(1+t)^{n-1} \, dt \] - Integrate \( dv \): \[ v = \frac{t^{m+1}}{m+1} \] ### Step 3: Apply the integration by parts formula Substituting into the integration by parts formula: \[ I(m,n) = \left[ (1+t)^n \cdot \frac{t^{m+1}}{m+1} \right]_0^1 - \int_0^1 \frac{t^{m+1}}{m+1} \cdot n(1+t)^{n-1} \, dt \] ### Step 4: Evaluate the boundary terms Now we evaluate the boundary terms: - At \( t = 1 \): \[ (1+1)^n \cdot \frac{1^{m+1}}{m+1} = \frac{2^n}{m+1} \] - At \( t = 0 \): \[ (1+0)^n \cdot \frac{0^{m+1}}{m+1} = 0 \] Thus, the boundary terms contribute: \[ \frac{2^n}{m+1} - 0 = \frac{2^n}{m+1} \] ### Step 5: Simplify the integral Now we simplify the remaining integral: \[ I(m,n) = \frac{2^n}{m+1} - \frac{n}{m+1} \int_0^1 t^{m+1} (1+t)^{n-1} \, dt \] This integral can be rewritten as: \[ I(m+1, n-1) = \int_0^1 t^{m+1} (1+t)^{n-1} \, dt \] Thus, we have: \[ I(m,n) = \frac{2^n}{m+1} - \frac{n}{m+1} I(m+1, n-1) \] ### Step 6: Rearranging the equation Rearranging gives: \[ I(m,n) = \frac{2^n}{m+1} - \frac{n}{m+1} I(m+1, n-1) \] ### Final Result The relationship can be expressed as: \[ I(m,n) = \frac{2^n}{m+1} - \frac{n}{m+1} I(m+1, n-1) \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (2)(FILL IN THE BLANKS)|1 Videos
  • INTEGRATION

    ML KHANNA|Exercise SELF ASSESSMENT TESET|10 Videos
  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|1 Videos
  • INEQUALITIES

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|4 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos

Similar Questions

Explore conceptually related problems

If I_(m,n)= int_(0)^(1) x^(m) (ln x)^(n) dx then I_(m,n) is also equal to

If L(m,n)=int_(0)^(1)t^(m)(1+t)^(n),dt , then prove that L(m,n)=(2^(n))/(m+1)-n/(m+1)L(m+1,n-1)

If I(m,n)=int_(0)^(1)x^(m-1)(1-x)^(n-1)dx, then

If I(m,n)=int_(0)^(1)t^(m)(1+t)^(n).dt, then the expression for I(m,n) in terms of I(m+1,n-1) is:

If I(m,n)=int_(0)^(1)x^(m-1)(1-x)^(n-1)dx,(m,n in I,m,n>=0),th epsilonI(m,n)=int_(0)^(oo)(x^(m-1))/((1+x)^(m-n))dxI(m,n)=int_(0)^(oo)(x^(m-1))/((1+x)^(m+n))dxI(m,n)=int_(0)^(oo)(x^(n-1))/((1+x)^(m+n))dxI(m,n)=int_(0)^(oo)(x^(n))/((1+x)^(m+n))dx

if I_(m,n)=int(x^(m))/((log x)^(n))dx, then (m+1)I_(m,n)-nI_(m,n+1) is