Home
Class 12
MATHS
int(0)^(oo)(1)/(1+e^(x))dx=...

`int_(0)^(oo)(1)/(1+e^(x))dx=`

A

`log 2-1`

B

`log 2`

C

`log 4-1`

D

`-log 2`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (2)(FILL IN THE BLANKS)|1 Videos
  • INTEGRATION

    ML KHANNA|Exercise SELF ASSESSMENT TESET|10 Videos
  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|1 Videos
  • INEQUALITIES

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|4 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(oo)(x)/(1+x^(4))dx=

int_(0)^(oo)(1)/(3+x^(2))dx

I=int_(0)^(oo)(dx)/(1+e^(x))

STATEMENT-1 : int_(0)^(oo)(dx)/(1+e^(x))=ln2-1 STATEMENT-2 : int_(0)^(oo)(sin(tan^(-1)))/(1+x^(2))dx=pi STATEMENT-3 : int_(0)^(pi^(2)//4)(sinsqrt(x))/(sqrt(x))dx=1

The value of the integral int_(0)^(oo)(1)/(1+x^(4))dx is

int_(0)^(oo)((1)/(x^(2)+1))dx

int_(0)^(oo)(1)/(x+a)dx

int_(0)^(oo)x^(3)e^(-x^(2))dx=

If I_(1)=int_(0)^(oo) (dx)/(1+x^(4))dx and I_(2)underset(0)overset(oo)int dx"then"n (I_(1))/(I_(2))=