Home
Class 12
MATHS
int1/(x(x^n+1))dx =...

`int1/(x(x^n+1))dx =`

A

`log""x^n/(x^n+1)`

B

`1/nlog""x^n/(x^n+1)`

C

`1/(2n)log""x^n/(x^n+1)`

D

none

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ \int \frac{1}{x(x^n + 1)} \, dx, \] we will use substitution and partial fractions. Here is the step-by-step solution: ### Step 1: Rewrite the Integral We start with the integral: \[ \int \frac{1}{x(x^n + 1)} \, dx. \] ### Step 2: Use Partial Fraction Decomposition We can express the integrand as a sum of fractions: \[ \frac{1}{x(x^n + 1)} = \frac{A}{x} + \frac{B}{x^n + 1}, \] where \(A\) and \(B\) are constants to be determined. ### Step 3: Find Constants A and B Multiplying both sides by the denominator \(x(x^n + 1)\) gives: \[ 1 = A(x^n + 1) + Bx. \] To find \(A\) and \(B\), we can choose convenient values for \(x\): 1. Let \(x = 0\): \[ 1 = A(0 + 1) + B(0) \implies A = 1. \] 2. Let \(x = -1\) (assuming \(n\) is even for simplicity): \[ 1 = 1(-1^n + 1) + B(-1) \implies 1 = 1(0) - B \implies B = -1. \] Thus, we have: \[ \frac{1}{x(x^n + 1)} = \frac{1}{x} - \frac{1}{x^n + 1}. \] ### Step 4: Rewrite the Integral Now we can rewrite the integral: \[ \int \left( \frac{1}{x} - \frac{1}{x^n + 1} \right) \, dx. \] ### Step 5: Integrate Each Term Now we integrate each term separately: 1. The integral of \(\frac{1}{x}\) is: \[ \int \frac{1}{x} \, dx = \log |x|. \] 2. For the second term, we will use substitution. Let \(t = x^n + 1\), then \(dt = n x^{n-1} \, dx\) or \(dx = \frac{dt}{n x^{n-1}}\). Notice that \(x^{n-1} = (t - 1)^{(n-1)/n}\). Thus, we have: \[ \int \frac{1}{x^n + 1} \, dx = \int \frac{1}{t} \cdot \frac{dt}{n (t - 1)^{(n-1)/n}}. \] This integral can be computed using logarithmic properties. ### Step 6: Combine the Results Combining the results from the two integrals: \[ \int \frac{1}{x} \, dx - \int \frac{1}{x^n + 1} \, dx = \log |x| - \frac{1}{n} \log |x^n + 1| + C. \] ### Final Result Thus, the final result is: \[ \int \frac{1}{x(x^n + 1)} \, dx = \log |x| - \frac{1}{n} \log |x^n + 1| + C. \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (2)(FILL IN THE BLANKS)|1 Videos
  • INTEGRATION

    ML KHANNA|Exercise SELF ASSESSMENT TESET|10 Videos
  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|1 Videos
  • INEQUALITIES

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|4 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos

Similar Questions

Explore conceptually related problems

int(1)/(x(x^(n)+1))dx

Evaluate: int(1)/(x(x^(n)+1))dx

int1/(x-x^(3))dx=

int(1)/(x+x^(-n))dx=

int1/(x^(2)-x^(3))dx=

int(dx)/(x(x^(n)+1)) is equal to

int1/(a+be^(x))dx=

int1/(1-sin x)*dx