Home
Class 12
MATHS
int1/(xsqrt((1+x^n)))dx=...

`int1/(xsqrt((1+x^n)))dx=`

A

`log""(sqrt((1+x^n))-1)/(sqrt((1+x^n))+1)`

B

`log""(sqrt((1+x^n))+1)/(sqrt((1+x^n))-1)`

C

`1/nlog""(sqrt((1+x^n))-1)/(sqrt((1+x^n))+1)`

D

none

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ \int \frac{1}{x \sqrt{1 + x^n}} \, dx, \] we can use substitution. Let's go through the steps: ### Step 1: Substitution Let \[ t = \sqrt{1 + x^n}. \] Then, squaring both sides gives: \[ t^2 = 1 + x^n \implies x^n = t^2 - 1. \] ### Step 2: Differentiate Now we differentiate \(t\) with respect to \(x\): \[ \frac{dt}{dx} = \frac{1}{2\sqrt{1 + x^n}} \cdot (n x^{n-1}) = \frac{n x^{n-1}}{2\sqrt{1 + x^n}}. \] Rearranging gives: \[ dx = \frac{2\sqrt{1 + x^n}}{n x^{n-1}} dt. \] ### Step 3: Substitute in the Integral Now we substitute \(dx\) and \(t\) into the integral: \[ \int \frac{1}{x \sqrt{1 + x^n}} \, dx = \int \frac{1}{x t} \cdot \frac{2\sqrt{1 + x^n}}{n x^{n-1}} dt. \] Since \(\sqrt{1 + x^n} = t\), we can replace it: \[ = \int \frac{1}{x t} \cdot \frac{2t}{n x^{n-1}} dt = \int \frac{2}{n x^n} dt. \] ### Step 4: Express \(x\) in terms of \(t\) From \(x^n = t^2 - 1\), we have: \[ x = (t^2 - 1)^{1/n}. \] Thus, \[ x^n = t^2 - 1 \implies x^n = t^2 - 1. \] ### Step 5: Substitute back into the Integral Now we can rewrite the integral: \[ \int \frac{2}{n(t^2 - 1)} dt. \] ### Step 6: Integrate The integral \[ \int \frac{2}{n(t^2 - 1)} dt \] can be solved using the formula for the integral of the form \(\int \frac{1}{a^2 - x^2} dx\): \[ \int \frac{1}{a^2 - x^2} dx = \frac{1}{2a} \ln \left| \frac{a+x}{a-x} \right| + C. \] In our case, we have: \[ = \frac{2}{n} \cdot \frac{1}{2} \ln \left| \frac{t + 1}{t - 1} \right| + C = \frac{1}{n} \ln \left| \frac{t + 1}{t - 1} \right| + C. \] ### Step 7: Substitute \(t\) back Now we substitute back \(t = \sqrt{1 + x^n}\): \[ = \frac{1}{n} \ln \left| \frac{\sqrt{1 + x^n} + 1}{\sqrt{1 + x^n} - 1} \right| + C. \] ### Final Answer Thus, the final result of the integral is: \[ \int \frac{1}{x \sqrt{1 + x^n}} \, dx = \frac{1}{n} \ln \left| \frac{\sqrt{1 + x^n} + 1}{\sqrt{1 + x^n} - 1} \right| + C. \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (2)(FILL IN THE BLANKS)|1 Videos
  • INTEGRATION

    ML KHANNA|Exercise SELF ASSESSMENT TESET|10 Videos
  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|1 Videos
  • INEQUALITIES

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|4 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos

Similar Questions

Explore conceptually related problems

intdx/(xsqrt(1+x^n))

Evaluate int1/(xsqrt(1+x^3))dx

Evaluate int1/(xsqrt(1+x^3))dx

int(1)/(x.sqrt(1-x^(3)))dx=

int(1)/(xsqrt(1-x^(3))) dx is equal to

int 1/(xsqrt(x^4-1))dx

int1/xsqrt((1-x)/(1+x))dx

int 1/(xsqrt(x^2-1)) dx =