Home
Class 12
MATHS
If int g(x) dx = g (x) , then int(f(x) ...

If `int g(x) dx = g (x) ` , then `int(f(x) + f' (x)) g (x) dx` is equal to

A

`f(x) g (x)`

B

`f'(x) g (x)`

C

`(f(x) -f'(x))g(x)`

D

`f(x)g'(x)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the integral \( \int (f(x) + f'(x)) g(x) \, dx \) given that \( \int g(x) \, dx = g(x) \). ### Step-by-Step Solution: 1. **Rewrite the Integral**: We start with the integral: \[ \int (f(x) + f'(x)) g(x) \, dx \] This can be split into two separate integrals: \[ \int f(x) g(x) \, dx + \int f'(x) g(x) \, dx \] 2. **Apply Integration by Parts**: For the second integral \( \int f'(x) g(x) \, dx \), we will use integration by parts. Recall the formula: \[ \int u \, dv = uv - \int v \, du \] Let \( u = f(x) \) and \( dv = g(x) \, dx \). Then, we have: - \( du = f'(x) \, dx \) - \( v = \int g(x) \, dx = g(x) \) (given) Applying integration by parts: \[ \int f'(x) g(x) \, dx = f(x) g(x) - \int f(x) g'(x) \, dx \] 3. **Combine the Integrals**: Now we can substitute this back into our expression: \[ \int (f(x) + f'(x)) g(x) \, dx = \int f(x) g(x) \, dx + \left( f(x) g(x) - \int f(x) g'(x) \, dx \right) \] Simplifying this gives: \[ \int (f(x) + f'(x)) g(x) \, dx = f(x) g(x) + \int f(x) g(x) \, dx - \int f(x) g'(x) \, dx \] 4. **Simplify Further**: Notice that \( \int f(x) g(x) \, dx \) appears on both sides. We can rearrange the equation: \[ \int (f(x) + f'(x)) g(x) \, dx - \int f(x) g(x) \, dx = f(x) g(x) - \int f(x) g'(x) \, dx \] This implies: \[ \int f(x) g(x) \, dx = f(x) g(x) + C \] where \( C \) is a constant of integration. 5. **Final Result**: Thus, we conclude: \[ \int (f(x) + f'(x)) g(x) \, dx = f(x) g(x) \] ### Final Answer: The integral \( \int (f(x) + f'(x)) g(x) \, dx \) is equal to \( f(x) g(x) \).
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (2)(FILL IN THE BLANKS)|1 Videos
  • INTEGRATION

    ML KHANNA|Exercise SELF ASSESSMENT TESET|10 Videos
  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|1 Videos
  • INEQUALITIES

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|4 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos

Similar Questions

Explore conceptually related problems

If int g(x)dx=f(x) , then : intf(x).g(x)dx=

If f(x) = x , g (x) = sinx , then int f(g(x)) dx is equal to

If int f(x)dx=g(x) then int f^(-1)(x)dx is

if int g(x)dx=g(x), then int g(x){f(x)+f'(x)}dx is equal to

int f(x)dx=g(x)+c then int f^(-1)(x)dxis