Home
Class 12
MATHS
inte^(ax)cosbx dx =...

`inte^(ax)cosbx dx =`

A

`(e^(ax))/r cos (bx-alpha)`

B

`(e^(ax))/r cos (bx+alpha)`

C

`(e^(ax))/r sin (bx-alpha)`

D

`(e^(ax))/r sin (nx+alpha)`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (2)(FILL IN THE BLANKS)|1 Videos
  • INTEGRATION

    ML KHANNA|Exercise SELF ASSESSMENT TESET|10 Videos
  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|1 Videos
  • INEQUALITIES

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|4 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos

Similar Questions

Explore conceptually related problems

If u=inte^(ax)sin " bx dx" and v=inte^(ax)cos " bx dx then "(u^(2)+v^(2))(a^(2)+b^(2))=

int e^(ax)cos(bx+c)dx

int e^(ax)2^(bx)dx

Indefinite Integration | Super Shortcut For JEE Main,BITSAT and NDA | int e^(ax) Sinbx and int e^(ax) cosbx

Evaluate: int e^(ax)sin(bx+c)dx

int x^(2)e^(ax)dx

If u=e^(ax)sinbx and v=e^(ax)cosbx . then what is u(du)/(dx)+v(dv)/(dx) equal to ?

If y=e^(ax)cosbx , then prove that : (d^(2)y)/(dx^(2))-2ady/dx+(a^(2)+b^(2))y=0 .

int(4e^(ax)+1)dx

int(ax^(2)+bx+c)dx