Home
Class 12
MATHS
If Im = int1^(e) (log x)^(m) dx, then I...

If `I_m = int_1^(e) (log x)^(m) dx, ` then `I_m+I_(m-1)` =

A

me

B

2e

C

3e

D

e

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (2)(FILL IN THE BLANKS)|1 Videos
  • INTEGRATION

    ML KHANNA|Exercise SELF ASSESSMENT TESET|10 Videos
  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|1 Videos
  • INEQUALITIES

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|4 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos

Similar Questions

Explore conceptually related problems

If I_(n)=int_(1)^(e)(log x)^(n) d x, then I_(n)+nI_(n-1) equal to

int(1)/(x(log x)^(m))dx

If I_(n)=int_(1)^(e)(log x)^(n)dx then I_(8)+8I_(7)=

I=int(1)/(x(log x)^(m))dx

Given I_(m)=int_(1)^(e)(log x)^(m)dx, then prove that (I_(m))/(1-m)+mI_(m-2)=e

If I_(m)=int_(1)^(e)(ln x)^(m)dx,m in N, then I_(10)+10I_(9) is equal to (A) e^(10)(B)(e^(10))/(10)(C)e(D)e-1

If I_(m,n)= int_(0)^(1) x^(m) (ln x)^(n) dx then I_(m,n) is also equal to

If I=int_(3)^(4)(1)/((log x)^((1)/(3)))dx, then