Home
Class 12
MATHS
If In = int0^(pi//2) x^(n) sin x dx and ...

If `I_n = int_0^(pi//2) x^(n) sin x dx and n gt 1` then `I_n + n (n-1) I_(n-2)` is equal to

A

`n(pi/2)^n`

B

`(n-1)(pi/2)^n`

C

`n(pi/2)^(n-1)`

D

`(n-1)(pi/2)^(n-1)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I_n = \int_0^{\frac{\pi}{2}} x^n \sin x \, dx \) and find the value of \( I_n + n(n-1)I_{n-2} \), we will use integration by parts. ### Step-by-Step Solution: 1. **Integration by Parts Setup**: We will use the integration by parts formula: \[ \int u \, dv = uv - \int v \, du \] Here, we choose: - \( u = x^n \) (thus \( du = n x^{n-1} \, dx \)) - \( dv = \sin x \, dx \) (thus \( v = -\cos x \)) 2. **Applying Integration by Parts**: Now we apply the integration by parts: \[ I_n = \int_0^{\frac{\pi}{2}} x^n \sin x \, dx = \left[-x^n \cos x \right]_0^{\frac{\pi}{2}} + \int_0^{\frac{\pi}{2}} n x^{n-1} \cos x \, dx \] 3. **Evaluating the Boundary Terms**: Evaluating the first term: - At \( x = \frac{\pi}{2} \), \( \cos\left(\frac{\pi}{2}\right) = 0 \) - At \( x = 0 \), \( -0^n \cos(0) = 0 \) Thus, the boundary term evaluates to \( 0 - 0 = 0 \). 4. **Rewriting the Integral**: Therefore, we have: \[ I_n = n \int_0^{\frac{\pi}{2}} x^{n-1} \cos x \, dx \] 5. **Applying Integration by Parts Again**: Now we need to evaluate \( \int_0^{\frac{\pi}{2}} x^{n-1} \cos x \, dx \) using integration by parts again: Choose: - \( u = x^{n-1} \) (thus \( du = (n-1)x^{n-2} \, dx \)) - \( dv = \cos x \, dx \) (thus \( v = \sin x \)) Applying integration by parts: \[ \int_0^{\frac{\pi}{2}} x^{n-1} \cos x \, dx = \left[ x^{n-1} \sin x \right]_0^{\frac{\pi}{2}} - \int_0^{\frac{\pi}{2}} (n-1)x^{n-2} \sin x \, dx \] 6. **Evaluating the Boundary Terms Again**: Evaluating the first term: - At \( x = \frac{\pi}{2} \), \( \sin\left(\frac{\pi}{2}\right) = 1 \) gives \( \left(\frac{\pi}{2}\right)^{n-1} \) - At \( x = 0 \), \( 0^{n-1} \sin(0) = 0 \) Thus, the boundary term evaluates to \( \left(\frac{\pi}{2}\right)^{n-1} - 0 = \left(\frac{\pi}{2}\right)^{n-1} \). 7. **Final Expression**: Therefore, we have: \[ I_n = n \left(\frac{\pi}{2}\right)^{n-1} - n(n-1) I_{n-2} \] 8. **Finding \( I_n + n(n-1)I_{n-2} \)**: Now we can find: \[ I_n + n(n-1)I_{n-2} = n \left(\frac{\pi}{2}\right)^{n-1} \] ### Conclusion: Thus, the final result is: \[ I_n + n(n-1)I_{n-2} = n \left(\frac{\pi}{2}\right)^{n-1} \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (2)(FILL IN THE BLANKS)|1 Videos
  • INTEGRATION

    ML KHANNA|Exercise SELF ASSESSMENT TESET|10 Videos
  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|1 Videos
  • INEQUALITIES

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|4 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos

Similar Questions

Explore conceptually related problems

Let I_(n)=int_(0)^(pi//2) sin^(n)x dx, nin N . Then

If I_(n)=int_(0)^(pi//2) x^(n) sin x dx , then I_(4)+12I_(2) is equal to\

If I_(n)=int_(0)^(pi//4)tan^(n)x dx , where n ge 2 , then : I_(n-2)+I_(n)=

If I _(n)=int _(0)^(pi) (sin (2nx))/(sin 2x)dx, then the value of I _( n +(1)/(2)) is equal to (n in I) :

If l_(n)=int_(0)^(pi//4) tan^(n)x dx, n in N "then" I_(n+2)+I_(n) equals