Home
Class 12
MATHS
If I(10) = int0^(pi//2)x^(10) sin x dx t...

If `I_(10) = int_0^(pi//2)x^(10)` sin x dx then the value of `I_(10) + 90I_8` is

A

`9(pi/2)^(6)`

B

`(pi/2)^(9)`

C

`10(pi/2)^(9)`

D

`9(pi/2)^(9)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I_{10} = \int_0^{\frac{\pi}{2}} x^{10} \sin x \, dx \) and find the value of \( I_{10} + 90 I_8 \), we will use integration by parts. ### Step 1: Apply Integration by Parts We use the integration by parts formula: \[ \int u \, dv = uv - \int v \, du \] Here, we choose: - \( u = x^{10} \) (algebraic function) - \( dv = \sin x \, dx \) Now, we need to find \( du \) and \( v \): - \( du = 10x^9 \, dx \) - \( v = -\cos x \) ### Step 2: Substitute into the Integration by Parts Formula Applying the integration by parts formula: \[ I_{10} = \left[ -x^{10} \cos x \right]_0^{\frac{\pi}{2}} - \int_0^{\frac{\pi}{2}} -\cos x \cdot 10x^9 \, dx \] ### Step 3: Evaluate the Boundary Terms Now, we evaluate the boundary term: \[ \left[ -x^{10} \cos x \right]_0^{\frac{\pi}{2}} = -\left( \left( \frac{\pi}{2} \right)^{10} \cos\left( \frac{\pi}{2} \right) - 0^{10} \cos(0) \right) \] Since \( \cos\left( \frac{\pi}{2} \right) = 0 \) and \( \cos(0) = 1 \): \[ = -\left( 0 - 0 \right) = 0 \] ### Step 4: Simplify the Integral Thus, we have: \[ I_{10} = 0 + 10 \int_0^{\frac{\pi}{2}} x^9 \cos x \, dx \] Let \( I_9 = \int_0^{\frac{\pi}{2}} x^9 \cos x \, dx \), so: \[ I_{10} = 10 I_9 \] ### Step 5: Apply Integration by Parts Again for \( I_9 \) Now we apply integration by parts to \( I_9 \): - Let \( u = x^9 \) and \( dv = \cos x \, dx \) - Then \( du = 9x^8 \, dx \) and \( v = \sin x \) Using the integration by parts formula again: \[ I_9 = \left[ x^9 \sin x \right]_0^{\frac{\pi}{2}} - \int_0^{\frac{\pi}{2}} \sin x \cdot 9x^8 \, dx \] Evaluating the boundary term: \[ \left[ x^9 \sin x \right]_0^{\frac{\pi}{2}} = \left( \frac{\pi}{2} \right)^9 \cdot 1 - 0 = \left( \frac{\pi}{2} \right)^9 \] Thus: \[ I_9 = \left( \frac{\pi}{2} \right)^9 - 9 I_8 \] ### Step 6: Substitute Back into \( I_{10} \) Now substituting \( I_9 \) back into the equation for \( I_{10} \): \[ I_{10} = 10 \left( \left( \frac{\pi}{2} \right)^9 - 9 I_8 \right) \] This simplifies to: \[ I_{10} = 10 \left( \frac{\pi}{2} \right)^9 - 90 I_8 \] ### Step 7: Rearranging the Equation Now we want to find \( I_{10} + 90 I_8 \): \[ I_{10} + 90 I_8 = 10 \left( \frac{\pi}{2} \right)^9 \] ### Final Answer Thus, the value of \( I_{10} + 90 I_8 \) is: \[ \boxed{10 \left( \frac{\pi}{2} \right)^9} \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (2)(FILL IN THE BLANKS)|1 Videos
  • INTEGRATION

    ML KHANNA|Exercise SELF ASSESSMENT TESET|10 Videos
  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|1 Videos
  • INEQUALITIES

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|4 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos

Similar Questions

Explore conceptually related problems

If u_(10)=int_(0)^(10)x^(10)sin xdx, then the value of u_(10)+90u_(8) is :

If u _(n) = int _(0) ^(pi//2) x ^(n) sin x dx, n in N then the value of u _(10) + 90 u _(s) is

The value of int_(0)^(pi//2) x^(10) sin x" dx" , is then the value of mu_(10)+90mu_(8) , is

If I_(1)=int_(0)^( pi)x sin xe^(cos4x)dx , and I_(2)=int_(0)^( pi/2)cos xe^(cos4x)dx ,then the value of [(I_(1))/(I_(2))] is (where [.] denotes the greatest integer function)

If I_(n)=int_(0)^(pi//2) x^(n) sin x dx , then I_(4)+12I_(2) is equal to\

I_(10)=int_(0)^((pi)/(2))x^(10)sin xdx then I_(10)+90I_(8) is (A)10((pi)/(2))^(6)(B)10((pi)/(2))^(9)(C)10((pi)/(2))^(8)(D)10((pi)/(2))^(7)

If I=int_(0)^(2pi) sin^(2) x" dx" , then

If " " I=int_0^(pi/4) dx/(1+cos2x) Find the value of 2I

int_(0)^(10 pi)|sin x|dx is