Home
Class 12
MATHS
intxe^x cosx dx is equal to...

`intxe^x cosx ` dx is equal to

A

`e^x/2{(1-x)sinx-x cosx}`

B

`e^x/2{(1+x)sinx-x cosx}`

C

`e^x/2{(1-x)sinx+x cosx}`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \(\int x e^x \cos x \, dx\), we will use the method of integration by parts. The integration by parts formula is given by: \[ \int u \, dv = uv - \int v \, du \] ### Step 1: Choose \(u\) and \(dv\) Let: - \(u = x e^x\) (which is an algebraic function) - \(dv = \cos x \, dx\) (which is a trigonometric function) ### Step 2: Differentiate \(u\) and Integrate \(dv\) Now we need to find \(du\) and \(v\): - To find \(du\): \[ du = \frac{d}{dx}(x e^x) \, dx = (e^x + x e^x) \, dx = e^x(1 + x) \, dx \] - To find \(v\): \[ v = \int \cos x \, dx = \sin x \] ### Step 3: Apply Integration by Parts Now we can apply the integration by parts formula: \[ \int x e^x \cos x \, dx = u v - \int v \, du \] Substituting the values we found: \[ = x e^x \sin x - \int \sin x \cdot e^x(1 + x) \, dx \] ### Step 4: Simplify the Integral Now we need to simplify the integral: \[ \int \sin x \cdot e^x(1 + x) \, dx = \int e^x \sin x \, dx + \int x e^x \sin x \, dx \] ### Step 5: Solve the Integral \(\int e^x \sin x \, dx\) We will use the known formula for \(\int e^{ax} \sin(bx) \, dx\): \[ \int e^{ax} \sin(bx) \, dx = \frac{e^{ax}}{a^2 + b^2} (a \sin(bx) - b \cos(bx)) \] For our case, \(a = 1\) and \(b = 1\): \[ \int e^x \sin x \, dx = \frac{e^x}{1^2 + 1^2} (1 \sin x - 1 \cos x) = \frac{e^x}{2} (\sin x - \cos x) \] ### Step 6: Substitute Back Now substituting back into our equation: \[ \int x e^x \cos x \, dx = x e^x \sin x - \left( \frac{e^x}{2} (\sin x - \cos x) + \int x e^x \sin x \, dx \right) \] ### Step 7: Rearranging the Equation Rearranging gives: \[ \int x e^x \cos x \, dx + \int x e^x \sin x \, dx = x e^x \sin x - \frac{e^x}{2} (\sin x - \cos x) \] ### Step 8: Combine the Integrals Let \(I = \int x e^x \cos x \, dx\) and \(J = \int x e^x \sin x \, dx\): \[ I + J = x e^x \sin x - \frac{e^x}{2} (\sin x - \cos x) \] ### Step 9: Solve for \(I\) Now we can express \(I\) in terms of \(J\): \[ I = x e^x \sin x - \frac{e^x}{2} (\sin x - \cos x) - J \] ### Step 10: Substitute \(J\) Back Now we can substitute \(J\) back into our equation: \[ I = x e^x \sin x - \frac{e^x}{2} (\sin x - \cos x) - \left( x e^x \cos x - \frac{e^x}{2} (\cos x + \sin x) \right) \] ### Final Step: Combine and Simplify After simplifying, we get: \[ I = \frac{e^x}{2} \left( x \sin x + x \cos x - \sin x + \cos x \right) + C \] Thus, the final result is: \[ \int x e^x \cos x \, dx = \frac{e^x}{2} \left( x \sin x + x \cos x - \sin x + \cos x \right) + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (2)(FILL IN THE BLANKS)|1 Videos
  • INTEGRATION

    ML KHANNA|Exercise SELF ASSESSMENT TESET|10 Videos
  • INTEGRATION

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|1 Videos
  • INEQUALITIES

    ML KHANNA|Exercise PROBLEM SET (1)(FILL IN THE BLANKS)|4 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos

Similar Questions

Explore conceptually related problems

intx logx dx is equal to

intx^(3)log x dx is equal to

int_(0)^(pi)(x.sin^(2)x.cosx)dx is equal to

intx^3dx is equal to …

int(cosx-sinx)/(1+2sin x cosx)dx is equal to