Home
Class 12
MATHS
int(0)^(pi//2)logsinx=-(pi/2)log2 then...

`int_(0)^(pi//2)logsinx=-(pi/2)log2`
then: `int_(0)^(pi//2) theta cot theta d theta= (pi)/(2) log 2`

Text Solution

AI Generated Solution

The correct Answer is:
To prove that \[ \int_{0}^{\frac{\pi}{2}} \theta \cot \theta \, d\theta = \frac{\pi}{2} \log 2, \] given that \[ \int_{0}^{\frac{\pi}{2}} \log \sin x \, dx = -\frac{\pi}{2} \log 2, \] we will follow these steps: ### Step 1: Define the integral Let \[ I = \int_{0}^{\frac{\pi}{2}} \theta \cot \theta \, d\theta. \] ### Step 2: Use integration by parts We will use integration by parts, where we let: - \( u = \theta \) (thus \( du = d\theta \)) - \( dv = \cot \theta \, d\theta \) (thus \( v = \log \sin \theta \)) Using the integration by parts formula: \[ \int u \, dv = uv - \int v \, du, \] we can compute \( I \): \[ I = \left[ \theta \log \sin \theta \right]_{0}^{\frac{\pi}{2}} - \int_{0}^{\frac{\pi}{2}} \log \sin \theta \, d\theta. \] ### Step 3: Evaluate the boundary term Now we evaluate the boundary term: \[ \left[ \theta \log \sin \theta \right]_{0}^{\frac{\pi}{2}}. \] At \( \theta = \frac{\pi}{2} \): \[ \frac{\pi}{2} \log \sin \left( \frac{\pi}{2} \right) = \frac{\pi}{2} \log 1 = 0. \] At \( \theta = 0 \): \[ 0 \cdot \log \sin(0) = 0 \cdot (-\infty) \text{ (which approaches 0)}. \] Thus, the boundary term evaluates to 0: \[ \left[ \theta \log \sin \theta \right]_{0}^{\frac{\pi}{2}} = 0 - 0 = 0. \] ### Step 4: Substitute back into the integral So we have: \[ I = 0 - \int_{0}^{\frac{\pi}{2}} \log \sin \theta \, d\theta = -\int_{0}^{\frac{\pi}{2}} \log \sin \theta \, d\theta. \] ### Step 5: Use the given condition From the given condition, we know: \[ \int_{0}^{\frac{\pi}{2}} \log \sin \theta \, d\theta = -\frac{\pi}{2} \log 2. \] Thus, substituting this into our expression for \( I \): \[ I = -\left(-\frac{\pi}{2} \log 2\right) = \frac{\pi}{2} \log 2. \] ### Conclusion Therefore, we have proven that: \[ \int_{0}^{\frac{\pi}{2}} \theta \cot \theta \, d\theta = \frac{\pi}{2} \log 2. \] ---
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ML KHANNA|Exercise ProblemSet (1) (Multiple Choice Questions)|31 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise ProblemSet (1) True and false|1 Videos
  • CORRELATION AND REGRESSION

    ML KHANNA|Exercise SELF ASSESSMENT TEST |10 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Self Assessment Test |19 Videos

Similar Questions

Explore conceptually related problems

int_(0) ^(pi//2) cos^(2) theta d theta =

int_(0)^( pi/2) sin^(2)theta cos theta d theta

int _(0) ^(pi) sin ^(2) theta cos theta d theta

int_(0)^((pi)/(4))theta sec^(2)theta d theta

Find: int_0^(pi/2)sin^3theta d theta

int_(0)^((pi)/(2))(sec theta-tan theta)d theta

int_(0)^( pi/2)cos^(9)theta d theta

int_(0)^( pi/2)cos^(9)theta d theta

int_(0)^( pi/2)cos^(3)theta d theta

int_(0)^(pi)log(1+cosx)dx=-pi(log2)