Home
Class 12
MATHS
int(0)^(pi/2)logsinx=-(pi/2)log2 Then:...

`int_(0)^(pi/2)logsinx=-(pi/2)log2`
Then: `int_(0)^(pi//2) theta^(2) cosec^(2) theta d theta= pi log 2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_{0}^{\frac{\pi}{2}} \theta^2 \csc^2 \theta \, d\theta \) and show that it equals \( \pi \log 2 \), we will use integration by parts. ### Step-by-Step Solution: 1. **Identify the Functions for Integration by Parts**: We will use the integration by parts formula: \[ \int u \, dv = uv - \int v \, du \] Here, let: - \( u = \theta^2 \) (algebraic function) - \( dv = \csc^2 \theta \, d\theta \) 2. **Differentiate and Integrate**: Now, we need to find \( du \) and \( v \): - Differentiate \( u \): \[ du = 2\theta \, d\theta \] - Integrate \( dv \): \[ v = -\cot \theta \] 3. **Apply the Integration by Parts Formula**: Substitute \( u \), \( du \), \( v \), and \( dv \) into the integration by parts formula: \[ \int_{0}^{\frac{\pi}{2}} \theta^2 \csc^2 \theta \, d\theta = \left[ -\theta^2 \cot \theta \right]_{0}^{\frac{\pi}{2}} + \int_{0}^{\frac{\pi}{2}} 2\theta \cot \theta \, d\theta \] 4. **Evaluate the Boundary Term**: Evaluate \( \left[ -\theta^2 \cot \theta \right]_{0}^{\frac{\pi}{2}} \): - At \( \theta = \frac{\pi}{2} \): \[ -\left(\frac{\pi}{2}\right)^2 \cot\left(\frac{\pi}{2}\right) = 0 \quad (\text{since } \cot\left(\frac{\pi}{2}\right) = 0) \] - At \( \theta = 0 \): \[ -\left(0\right)^2 \cot(0) = 0 \quad (\text{since } \cot(0) \text{ is undefined but the term is } 0) \] Thus, the boundary term evaluates to \( 0 \). 5. **Now Focus on the Remaining Integral**: We have: \[ \int_{0}^{\frac{\pi}{2}} \theta^2 \csc^2 \theta \, d\theta = 0 + \int_{0}^{\frac{\pi}{2}} 2\theta \cot \theta \, d\theta \] So we need to evaluate: \[ \int_{0}^{\frac{\pi}{2}} 2\theta \cot \theta \, d\theta \] 6. **Use Integration by Parts Again**: For \( \int \theta \cot \theta \, d\theta \), let: - \( u = \theta \) - \( dv = \cot \theta \, d\theta \) Then: - \( du = d\theta \) - \( v = \log(\sin \theta) \) Applying integration by parts again: \[ \int \theta \cot \theta \, d\theta = \theta \log(\sin \theta) - \int \log(\sin \theta) \, d\theta \] 7. **Evaluate the New Integral**: The integral \( \int \log(\sin \theta) \, d\theta \) is known from the problem statement: \[ \int_{0}^{\frac{\pi}{2}} \log(\sin \theta) \, d\theta = -\frac{\pi}{2} \log 2 \] 8. **Putting It All Together**: Now we can substitute back: \[ \int_{0}^{\frac{\pi}{2}} 2\theta \cot \theta \, d\theta = 2\left[ \theta \log(\sin \theta) \right]_{0}^{\frac{\pi}{2}} - 2\left(-\frac{\pi}{2} \log 2\right) \] Evaluating the boundary term gives \( 0 \) again, so: \[ = 0 + \pi \log 2 \] 9. **Final Result**: Therefore, we conclude: \[ \int_{0}^{\frac{\pi}{2}} \theta^2 \csc^2 \theta \, d\theta = \pi \log 2 \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ML KHANNA|Exercise ProblemSet (1) (Multiple Choice Questions)|31 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise ProblemSet (1) True and false|1 Videos
  • CORRELATION AND REGRESSION

    ML KHANNA|Exercise SELF ASSESSMENT TEST |10 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Self Assessment Test |19 Videos

Similar Questions

Explore conceptually related problems

int_(0)^((pi)/(4))theta sec^(2)theta d theta

int_(0)^( pi/2) sin^(2)theta cos theta d theta

int_ (0) ^ ((pi) / (2)) cos ^ (4) theta d theta

int _(0) ^(pi) sin ^(2) theta cos theta d theta

The value of int_(pi//4)^(pi//2) cot theta cosec^(2) theta d theta is

int_(0) ^(pi//2) cos^(2) theta d theta =

int_(0)^(2pi) (sin 2 theta)/(a-b cos 2 theta )d theta =

int_(0)^(pi)log(1+cosx)dx=-pi(log2)

int_(0)^((pi)/(2))sin^(2)theta cos^(6)theta d theta equals

If int_(0)^((pi)/2)log(cosx)dx=-(pi)/2log2 , then int_(0)^((pi)/2)log(cosecx)dx=