Home
Class 12
MATHS
If int(0)^(50pi) (sin^(4) x +cos^(4) x)d...

If `int_(0)^(50pi) (sin^(4) x +cos^(4) x)dx = k int_(0)^(pi//2) ((3)/(4) + (1)/(4) cos 4x)dx`, then k=

A

200

B

100

C

50

D

25

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we start with the equation: \[ \int_{0}^{50\pi} (\sin^4 x + \cos^4 x) \, dx = k \int_{0}^{\frac{\pi}{2}} \left( \frac{3}{4} + \frac{1}{4} \cos 4x \right) \, dx \] ### Step 1: Evaluate the left-hand side integral The function \(\sin^4 x + \cos^4 x\) can be simplified using the identity: \[ \sin^4 x + \cos^4 x = (\sin^2 x + \cos^2 x)^2 - 2\sin^2 x \cos^2 x = 1 - 2\sin^2 x \cos^2 x \] Using the identity \(\sin^2 x \cos^2 x = \frac{1}{4} \sin^2 2x\), we have: \[ \sin^4 x + \cos^4 x = 1 - \frac{1}{2} \sin^2 2x \] Thus, we can rewrite the integral: \[ \int_{0}^{50\pi} (\sin^4 x + \cos^4 x) \, dx = \int_{0}^{50\pi} \left( 1 - \frac{1}{2} \sin^2 2x \right) \, dx \] ### Step 2: Split the integral Now, we can split the integral into two parts: \[ \int_{0}^{50\pi} 1 \, dx - \frac{1}{2} \int_{0}^{50\pi} \sin^2 2x \, dx \] Calculating the first integral: \[ \int_{0}^{50\pi} 1 \, dx = 50\pi \] ### Step 3: Evaluate the second integral To evaluate \(\int_{0}^{50\pi} \sin^2 2x \, dx\), we use the property of periodic functions. The period of \(\sin^2 2x\) is \(\frac{\pi}{2}\). Therefore, we can calculate: \[ \int_{0}^{50\pi} \sin^2 2x \, dx = 100 \int_{0}^{\frac{\pi}{2}} \sin^2 2x \, dx \] Using the identity \(\sin^2 \theta = \frac{1 - \cos 2\theta}{2}\): \[ \int_{0}^{\frac{\pi}{2}} \sin^2 2x \, dx = \int_{0}^{\frac{\pi}{2}} \frac{1 - \cos 4x}{2} \, dx = \frac{1}{2} \left( \frac{\pi}{2} - 0 \right) = \frac{\pi}{4} \] Thus: \[ \int_{0}^{50\pi} \sin^2 2x \, dx = 100 \cdot \frac{\pi}{4} = 25\pi \] ### Step 4: Combine results Now substituting back, we have: \[ \int_{0}^{50\pi} (\sin^4 x + \cos^4 x) \, dx = 50\pi - \frac{1}{2} \cdot 25\pi = 50\pi - 12.5\pi = 37.5\pi \] ### Step 5: Evaluate the right-hand side integral Now we evaluate the right-hand side: \[ \int_{0}^{\frac{\pi}{2}} \left( \frac{3}{4} + \frac{1}{4} \cos 4x \right) \, dx = \int_{0}^{\frac{\pi}{2}} \frac{3}{4} \, dx + \int_{0}^{\frac{\pi}{2}} \frac{1}{4} \cos 4x \, dx \] Calculating the first integral: \[ \int_{0}^{\frac{\pi}{2}} \frac{3}{4} \, dx = \frac{3}{4} \cdot \frac{\pi}{2} = \frac{3\pi}{8} \] For the second integral: \[ \int_{0}^{\frac{\pi}{2}} \frac{1}{4} \cos 4x \, dx = \frac{1}{4} \cdot \left[ \frac{\sin 4x}{4} \right]_{0}^{\frac{\pi}{2}} = \frac{1}{4} \cdot \left(0 - 0\right) = 0 \] Thus, the right-hand side becomes: \[ \int_{0}^{\frac{\pi}{2}} \left( \frac{3}{4} + \frac{1}{4} \cos 4x \right) \, dx = \frac{3\pi}{8} \] ### Step 6: Set up the equation for k Now we have: \[ 37.5\pi = k \cdot \frac{3\pi}{8} \] Dividing both sides by \(\pi\): \[ 37.5 = k \cdot \frac{3}{8} \] Multiplying both sides by \(\frac{8}{3}\): \[ k = 37.5 \cdot \frac{8}{3} = 100 \] Thus, the value of \(k\) is: \[ \boxed{100} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ML KHANNA|Exercise ProblemSet (1) True and false|1 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise ProblemSet (2) (Multiple Choice Questions)|47 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Miscellaneous Questions (Assertion/Reason)|1 Videos
  • CORRELATION AND REGRESSION

    ML KHANNA|Exercise SELF ASSESSMENT TEST |10 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Self Assessment Test |19 Videos

Similar Questions

Explore conceptually related problems

int_(0)^( pi)x(sin^(4)x cos^(4)x)dx

int_(pi)^((3pi)/2)(sin^(4)x+cos^(4)x)dx

int_(0)^(pi) xsin x cos^(4)x dx=

int_(0)^(pi//2) (1)/(4+3 cos x)dx

If int_(0)^(pi) x f (cos^(2) x + tan ^(4) x ) dx = k int_(0)^(pi//2) f(cos^(2) x + tan ^(4) x ) dx then k =

int_(0)^(pi//4)(sin 2 x)/(sin^(4) x + cos^(4) x ) dx =

int_(0)^(pi)(cos^(4)x-sin^(4)x)dx=

int_(0)^(pi)sin 5 x cos 4x dx=

int_(0)^( pi/4)(sin x-cos x)dx

int_(0)^( pi)x*sin x*cos^(4)x*dx

ML KHANNA-DEFINITE INTEGRAL-ProblemSet (1) (Multiple Choice Questions)
  1. int(0)^(pi//2) x cotx dx=

    Text Solution

    |

  2. If int(0)^(100pi) sqrt(1-cos 2x)d x=200k, then k is equal to

    Text Solution

    |

  3. If int(0)^(50pi) (sin^(4) x +cos^(4) x)dx = k int(0)^(pi//2) ((3)/(4) ...

    Text Solution

    |

  4. int(0)^(4pi) |cos x|dx=

    Text Solution

    |

  5. int(0)^(32pi//3) sqrt(1+cos 2x) dx

    Text Solution

    |

  6. The value of int(0)^(2) |"cos"(pi)/(2)x|dx is

    Text Solution

    |

  7. I(0)= int(0)^(n pi) f(|cos x|) dx and I(2)= int(0)^(5pi) f |cos x|dx, ...

    Text Solution

    |

  8. If I(1)= int(0)^(3pi) f (cos^(2) x)dx and I(2)= int(0)^(pi) f (cos^(2)...

    Text Solution

    |

  9. The value of int(a)^(a+pi//2) (sin^(4) x + cos^(4) x)dx is

    Text Solution

    |

  10. If for every integer n, int(n)^(n+1) f(x) dx= n^(2), then the value of...

    Text Solution

    |

  11. If int(-2)^(3) f (x) dx= 5 and int(1)^(3) [2-f(x)] dx=6, then int(-2)^...

    Text Solution

    |

  12. If int(-1)^(4) f(x) dx= 4 and int(2)^(4) [3-f(x)] dx= 7, then the valu...

    Text Solution

    |

  13. The value of the integral Sigma(r=1)^(n) int(0)^(1) f(r-1 +x) dx is

    Text Solution

    |

  14. The value of int(0)^(100) e^(x- [x])dx is

    Text Solution

    |

  15. If f(x) is a function satisfying f((1)/(x)) + x^(2) f(x) =0 for all no...

    Text Solution

    |

  16. If 2f(x) + 3f((1)/(x))= (1)/(x)-2, x ne 0 then int(1)^(2) f(x)dx=

    Text Solution

    |

  17. The value of the integral int(0)^(oo) (x log x)/((1+x^(2))^(2)) dx is

    Text Solution

    |

  18. int(0)^(1) "tan"^(-1) (2x-1)/({1+x-x^(2)})dx=

    Text Solution

    |

  19. The value of int(1//e)^(tan x) (t)/(1+ t^(2)) dt+ int(1//e)^(cot x) (1...

    Text Solution

    |

  20. int(0)^(pi) sin^(5) ((x)/(2))dx equals

    Text Solution

    |