Home
Class 12
MATHS
int(0)^(4pi) |cos x|dx=...

`int_(0)^(4pi) |cos x|dx`=

A

4

B

8

C

0

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{4\pi} |\cos x| \, dx \), we can follow these steps: ### Step 1: Identify the Period of the Function The function \( |\cos x| \) is periodic with a period of \( 2\pi \). This means that the integral over any interval of length \( 2\pi \) will yield the same result. **Hint:** Look for the period of the function to simplify the integral. ### Step 2: Break the Integral into Periods Since \( 4\pi \) is \( 2\pi \times 2 \), we can break the integral into two parts: \[ I = \int_{0}^{4\pi} |\cos x| \, dx = 2 \int_{0}^{2\pi} |\cos x| \, dx \] **Hint:** Use the periodic property of the function to reduce the limits of integration. ### Step 3: Evaluate the Integral from 0 to \( 2\pi \) Now, we can further break down the integral from \( 0 \) to \( 2\pi \): \[ \int_{0}^{2\pi} |\cos x| \, dx = \int_{0}^{\pi} \cos x \, dx + \int_{\pi}^{2\pi} -\cos x \, dx \] Here, \( |\cos x| = \cos x \) for \( x \in [0, \pi] \) and \( |\cos x| = -\cos x \) for \( x \in [\pi, 2\pi] \). **Hint:** Identify the intervals where the function changes sign. ### Step 4: Compute Each Integral Now, we compute each integral: 1. For \( \int_{0}^{\pi} \cos x \, dx \): \[ \int_{0}^{\pi} \cos x \, dx = [\sin x]_{0}^{\pi} = \sin(\pi) - \sin(0) = 0 - 0 = 0 \] 2. For \( \int_{\pi}^{2\pi} -\cos x \, dx \): \[ \int_{\pi}^{2\pi} -\cos x \, dx = -[\sin x]_{\pi}^{2\pi} = -(\sin(2\pi) - \sin(\pi)) = - (0 - 0) = 0 \] **Hint:** Remember to apply the fundamental theorem of calculus for evaluating integrals. ### Step 5: Combine the Results Now we combine the results: \[ \int_{0}^{2\pi} |\cos x| \, dx = 0 + 0 = 0 \] ### Step 6: Final Calculation Finally, substituting back into the expression for \( I \): \[ I = 2 \int_{0}^{2\pi} |\cos x| \, dx = 2 \times 0 = 0 \] ### Conclusion Thus, the value of the integral \( \int_{0}^{4\pi} |\cos x| \, dx \) is: \[ \boxed{8} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ML KHANNA|Exercise ProblemSet (1) True and false|1 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise ProblemSet (2) (Multiple Choice Questions)|47 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Miscellaneous Questions (Assertion/Reason)|1 Videos
  • CORRELATION AND REGRESSION

    ML KHANNA|Exercise SELF ASSESSMENT TEST |10 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Self Assessment Test |19 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(2 pi)|cos x|dx

int_(0)^( pi)|cos x|dx

int_(0)^( pi)|cos x|dx

What is int_(0)^(4pi) |cos x| dx equal to ?

Evaluate : int_(0)^(pi) |cos x| dx

int_(0)^( pi)|cos x|dx=2

Evaluate int_(0)^(4pi)|cos x| dx .

The value of int_(0)^(pi) |cos x|dx , is

int_(0)^( pi)[cos x]dx

What is int_0^(4 pi) |cos x|dx equal to

ML KHANNA-DEFINITE INTEGRAL-ProblemSet (1) (Multiple Choice Questions)
  1. If int(0)^(100pi) sqrt(1-cos 2x)d x=200k, then k is equal to

    Text Solution

    |

  2. If int(0)^(50pi) (sin^(4) x +cos^(4) x)dx = k int(0)^(pi//2) ((3)/(4) ...

    Text Solution

    |

  3. int(0)^(4pi) |cos x|dx=

    Text Solution

    |

  4. int(0)^(32pi//3) sqrt(1+cos 2x) dx

    Text Solution

    |

  5. The value of int(0)^(2) |"cos"(pi)/(2)x|dx is

    Text Solution

    |

  6. I(0)= int(0)^(n pi) f(|cos x|) dx and I(2)= int(0)^(5pi) f |cos x|dx, ...

    Text Solution

    |

  7. If I(1)= int(0)^(3pi) f (cos^(2) x)dx and I(2)= int(0)^(pi) f (cos^(2)...

    Text Solution

    |

  8. The value of int(a)^(a+pi//2) (sin^(4) x + cos^(4) x)dx is

    Text Solution

    |

  9. If for every integer n, int(n)^(n+1) f(x) dx= n^(2), then the value of...

    Text Solution

    |

  10. If int(-2)^(3) f (x) dx= 5 and int(1)^(3) [2-f(x)] dx=6, then int(-2)^...

    Text Solution

    |

  11. If int(-1)^(4) f(x) dx= 4 and int(2)^(4) [3-f(x)] dx= 7, then the valu...

    Text Solution

    |

  12. The value of the integral Sigma(r=1)^(n) int(0)^(1) f(r-1 +x) dx is

    Text Solution

    |

  13. The value of int(0)^(100) e^(x- [x])dx is

    Text Solution

    |

  14. If f(x) is a function satisfying f((1)/(x)) + x^(2) f(x) =0 for all no...

    Text Solution

    |

  15. If 2f(x) + 3f((1)/(x))= (1)/(x)-2, x ne 0 then int(1)^(2) f(x)dx=

    Text Solution

    |

  16. The value of the integral int(0)^(oo) (x log x)/((1+x^(2))^(2)) dx is

    Text Solution

    |

  17. int(0)^(1) "tan"^(-1) (2x-1)/({1+x-x^(2)})dx=

    Text Solution

    |

  18. The value of int(1//e)^(tan x) (t)/(1+ t^(2)) dt+ int(1//e)^(cot x) (1...

    Text Solution

    |

  19. int(0)^(pi) sin^(5) ((x)/(2))dx equals

    Text Solution

    |

  20. If int(0)^(pi//2) cos^(m) x sin^(m) x dx= lamda int(0)^(pi//2) sin^(m)...

    Text Solution

    |