Home
Class 12
MATHS
int(0)^(32pi//3) sqrt(1+cos 2x) dx...

`int_(0)^(32pi//3) sqrt(1+cos 2x) dx`

A

`20 sqrt2- sqrt((3)/(2))`

B

`22 sqrt2 + sqrt((3)/(2))`

C

`22 sqrt2- sqrt((3)/(2))`

D

None

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{\frac{32\pi}{3}} \sqrt{1 + \cos 2x} \, dx \), we can follow these steps: ### Step 1: Simplify the Integrand We start by using the identity for cosine: \[ \cos 2x = 2\cos^2 x - 1 \] Thus, we can rewrite the integrand: \[ \sqrt{1 + \cos 2x} = \sqrt{1 + (2\cos^2 x - 1)} = \sqrt{2\cos^2 x} = \sqrt{2} |\cos x| \] ### Step 2: Determine the Period of the Function The function \( |\cos x| \) has a period of \( \pi \). Therefore, we can break the integral from \( 0 \) to \( \frac{32\pi}{3} \) into segments of length \( \pi \): \[ I = \int_{0}^{\frac{32\pi}{3}} \sqrt{2} |\cos x| \, dx = \sqrt{2} \left( \int_{0}^{\pi} |\cos x| \, dx \right) \times n \] where \( n \) is the number of complete periods of \( \pi \) in \( \frac{32\pi}{3} \). ### Step 3: Calculate the Number of Periods The length of the interval \( \frac{32\pi}{3} \) can be divided by \( \pi \): \[ n = \frac{\frac{32\pi}{3}}{\pi} = \frac{32}{3} \approx 10.67 \] This means there are 10 complete periods of \( \pi \) and a remainder. ### Step 4: Calculate the Integral Over One Period Next, we compute: \[ \int_{0}^{\pi} |\cos x| \, dx \] Since \( \cos x \) is non-negative in \( [0, \frac{\pi}{2}] \) and non-positive in \( [\frac{\pi}{2}, \pi] \), we can split this integral: \[ \int_{0}^{\pi} |\cos x| \, dx = \int_{0}^{\frac{\pi}{2}} \cos x \, dx + \int_{\frac{\pi}{2}}^{\pi} -\cos x \, dx \] Calculating these integrals: \[ \int_{0}^{\frac{\pi}{2}} \cos x \, dx = [\sin x]_{0}^{\frac{\pi}{2}} = 1 - 0 = 1 \] \[ \int_{\frac{\pi}{2}}^{\pi} -\cos x \, dx = -[\sin x]_{\frac{\pi}{2}}^{\pi} = -(-1 - 0) = 1 \] Thus, \[ \int_{0}^{\pi} |\cos x| \, dx = 1 + 1 = 2 \] ### Step 5: Calculate the Total Integral Now we can substitute back into our expression for \( I \): \[ I = \sqrt{2} \cdot 10 \cdot 2 + \sqrt{2} \cdot \int_{0}^{\frac{2\pi}{3}} |\cos x| \, dx \] The remaining integral \( \int_{0}^{\frac{2\pi}{3}} |\cos x| \, dx \) can be computed as follows: \[ \int_{0}^{\frac{2\pi}{3}} |\cos x| \, dx = \int_{0}^{\frac{\pi}{2}} \cos x \, dx + \int_{\frac{\pi}{2}}^{\frac{2\pi}{3}} -\cos x \, dx \] Calculating: \[ \int_{0}^{\frac{\pi}{2}} \cos x \, dx = 1 \] For \( \int_{\frac{\pi}{2}}^{\frac{2\pi}{3}} -\cos x \, dx \): \[ -\left[\sin x\right]_{\frac{\pi}{2}}^{\frac{2\pi}{3}} = -\left(\sin\frac{2\pi}{3} - \sin\frac{\pi}{2}\right) = -\left(\frac{\sqrt{3}}{2} - 1\right) = 1 - \frac{\sqrt{3}}{2} \] Thus, \[ \int_{0}^{\frac{2\pi}{3}} |\cos x| \, dx = 1 + \left(1 - \frac{\sqrt{3}}{2}\right) = 2 - \frac{\sqrt{3}}{2} \] ### Final Calculation Putting everything together: \[ I = \sqrt{2} \cdot 20 + \sqrt{2} \left(2 - \frac{\sqrt{3}}{2}\right) = 20\sqrt{2} + \sqrt{2} \cdot 2 - \frac{\sqrt{2} \cdot \sqrt{3}}{2} \] \[ = 22\sqrt{2} - \frac{\sqrt{6}}{2} \] ### Conclusion Thus, the final answer is: \[ I = 22\sqrt{2} - \frac{\sqrt{6}}{2} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ML KHANNA|Exercise ProblemSet (1) True and false|1 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise ProblemSet (2) (Multiple Choice Questions)|47 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Miscellaneous Questions (Assertion/Reason)|1 Videos
  • CORRELATION AND REGRESSION

    ML KHANNA|Exercise SELF ASSESSMENT TEST |10 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Self Assessment Test |19 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi//2) sqrt(1- cos 2x) dx

int_(0)^(pi//2) sqrt(1- cos 2x) dx

The value of int_(0)^(32pi//3) sqrt(1+cos2x)dx is

int _(0)^(pi//2) sqrt(1+ cos x dx)

int_(0)^(pi//6) sqrt(1-sin 2x) dx

int_(0)^(pi//2)sqrt(1+cos2x)dx=?

int _(0) ^(pi//2) sqrt(1-cos x )" "dx=

Evaluate : (i) int_(0)^(pi//4)sqrt(1+sin2x)\ dx (ii) int_(0)^(pi//2)sqrt(1+cos2x)\ dx

int_(0)^(pi//4)sqrt(1+cos2x)dx

Evaluate: int_(0)^( pi/2)sqrt(1-cos2x)dx

ML KHANNA-DEFINITE INTEGRAL-ProblemSet (1) (Multiple Choice Questions)
  1. If int(0)^(50pi) (sin^(4) x +cos^(4) x)dx = k int(0)^(pi//2) ((3)/(4) ...

    Text Solution

    |

  2. int(0)^(4pi) |cos x|dx=

    Text Solution

    |

  3. int(0)^(32pi//3) sqrt(1+cos 2x) dx

    Text Solution

    |

  4. The value of int(0)^(2) |"cos"(pi)/(2)x|dx is

    Text Solution

    |

  5. I(0)= int(0)^(n pi) f(|cos x|) dx and I(2)= int(0)^(5pi) f |cos x|dx, ...

    Text Solution

    |

  6. If I(1)= int(0)^(3pi) f (cos^(2) x)dx and I(2)= int(0)^(pi) f (cos^(2)...

    Text Solution

    |

  7. The value of int(a)^(a+pi//2) (sin^(4) x + cos^(4) x)dx is

    Text Solution

    |

  8. If for every integer n, int(n)^(n+1) f(x) dx= n^(2), then the value of...

    Text Solution

    |

  9. If int(-2)^(3) f (x) dx= 5 and int(1)^(3) [2-f(x)] dx=6, then int(-2)^...

    Text Solution

    |

  10. If int(-1)^(4) f(x) dx= 4 and int(2)^(4) [3-f(x)] dx= 7, then the valu...

    Text Solution

    |

  11. The value of the integral Sigma(r=1)^(n) int(0)^(1) f(r-1 +x) dx is

    Text Solution

    |

  12. The value of int(0)^(100) e^(x- [x])dx is

    Text Solution

    |

  13. If f(x) is a function satisfying f((1)/(x)) + x^(2) f(x) =0 for all no...

    Text Solution

    |

  14. If 2f(x) + 3f((1)/(x))= (1)/(x)-2, x ne 0 then int(1)^(2) f(x)dx=

    Text Solution

    |

  15. The value of the integral int(0)^(oo) (x log x)/((1+x^(2))^(2)) dx is

    Text Solution

    |

  16. int(0)^(1) "tan"^(-1) (2x-1)/({1+x-x^(2)})dx=

    Text Solution

    |

  17. The value of int(1//e)^(tan x) (t)/(1+ t^(2)) dt+ int(1//e)^(cot x) (1...

    Text Solution

    |

  18. int(0)^(pi) sin^(5) ((x)/(2))dx equals

    Text Solution

    |

  19. If int(0)^(pi//2) cos^(m) x sin^(m) x dx= lamda int(0)^(pi//2) sin^(m)...

    Text Solution

    |

  20. The value of int(1)^(e^(37)) (pi sin (pi ln x))/(x) dx is

    Text Solution

    |