Home
Class 12
MATHS
The value of int(0)^(2) |"cos"(pi)/(2)x|...

The value of `int_(0)^(2) |"cos"(pi)/(2)x|dx` is

A

`2pi`

B

`pi//2`

C

`3//4pi`

D

`4//pi`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_{0}^{2} |\cos\left(\frac{\pi}{2} x\right)| \, dx \), we will follow these steps: ### Step 1: Identify the function and its behavior The function we are integrating is \( |\cos\left(\frac{\pi}{2} x\right)| \). We need to determine where this function changes sign within the interval \([0, 2]\). ### Step 2: Find the points where the function is zero To find where \( \cos\left(\frac{\pi}{2} x\right) = 0 \): \[ \frac{\pi}{2} x = \frac{\pi}{2} + n\pi \quad \text{for } n \in \mathbb{Z} \] This gives: \[ x = 1 + 2n \quad \text{for } n \in \mathbb{Z} \] Within the interval \([0, 2]\), the relevant point is \( x = 1 \). ### Step 3: Break the integral at the point where the function changes sign Since \( \cos\left(\frac{\pi}{2} x\right) \) is positive on \([0, 1]\) and negative on \([1, 2]\), we can express the integral as: \[ \int_{0}^{2} |\cos\left(\frac{\pi}{2} x\right)| \, dx = \int_{0}^{1} \cos\left(\frac{\pi}{2} x\right) \, dx + \int_{1}^{2} -\cos\left(\frac{\pi}{2} x\right) \, dx \] ### Step 4: Calculate the first integral For the first integral: \[ \int_{0}^{1} \cos\left(\frac{\pi}{2} x\right) \, dx \] Using the integral formula \( \int \cos(kx) \, dx = \frac{1}{k} \sin(kx) + C \): \[ = \left[ \frac{2}{\pi} \sin\left(\frac{\pi}{2} x\right) \right]_{0}^{1} = \frac{2}{\pi} \left( \sin\left(\frac{\pi}{2}\right) - \sin(0) \right) = \frac{2}{\pi} (1 - 0) = \frac{2}{\pi} \] ### Step 5: Calculate the second integral For the second integral: \[ \int_{1}^{2} -\cos\left(\frac{\pi}{2} x\right) \, dx \] This becomes: \[ -\left[ \frac{2}{\pi} \sin\left(\frac{\pi}{2} x\right) \right]_{1}^{2} = -\frac{2}{\pi} \left( \sin(\pi) - \sin\left(\frac{\pi}{2}\right) \right) = -\frac{2}{\pi} (0 - 1) = \frac{2}{\pi} \] ### Step 6: Combine the results Now, we combine both integrals: \[ \int_{0}^{2} |\cos\left(\frac{\pi}{2} x\right)| \, dx = \frac{2}{\pi} + \frac{2}{\pi} = \frac{4}{\pi} \] ### Final Answer Thus, the value of the integral is: \[ \int_{0}^{2} |\cos\left(\frac{\pi}{2} x\right)| \, dx = \frac{4}{\pi} \] ---
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ML KHANNA|Exercise ProblemSet (1) True and false|1 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise ProblemSet (2) (Multiple Choice Questions)|47 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Miscellaneous Questions (Assertion/Reason)|1 Videos
  • CORRELATION AND REGRESSION

    ML KHANNA|Exercise SELF ASSESSMENT TEST |10 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Self Assessment Test |19 Videos

Similar Questions

Explore conceptually related problems

If f(x)=cos ec(x-(pi)/(3))cos ec(x-(pi)/(6)) then the value of int_(0)^((pi)/(2))f(x)dx is

The value of int_(0)^(2pi) |cos x -sin x|dx is

What is the value of int_(0)^(pi//2) cos^(8)dx ?

The value of int_(0)^(2 pi)|cos x-sin x|dx is

The value of int_(0)^(2pi)cos^(99)x dx is

The value of int_(0)^(pi) |cos x|dx , is

The value of int_(0)^(2pi)cos^(5)x dx , is

ML KHANNA-DEFINITE INTEGRAL-ProblemSet (1) (Multiple Choice Questions)
  1. int(0)^(4pi) |cos x|dx=

    Text Solution

    |

  2. int(0)^(32pi//3) sqrt(1+cos 2x) dx

    Text Solution

    |

  3. The value of int(0)^(2) |"cos"(pi)/(2)x|dx is

    Text Solution

    |

  4. I(0)= int(0)^(n pi) f(|cos x|) dx and I(2)= int(0)^(5pi) f |cos x|dx, ...

    Text Solution

    |

  5. If I(1)= int(0)^(3pi) f (cos^(2) x)dx and I(2)= int(0)^(pi) f (cos^(2)...

    Text Solution

    |

  6. The value of int(a)^(a+pi//2) (sin^(4) x + cos^(4) x)dx is

    Text Solution

    |

  7. If for every integer n, int(n)^(n+1) f(x) dx= n^(2), then the value of...

    Text Solution

    |

  8. If int(-2)^(3) f (x) dx= 5 and int(1)^(3) [2-f(x)] dx=6, then int(-2)^...

    Text Solution

    |

  9. If int(-1)^(4) f(x) dx= 4 and int(2)^(4) [3-f(x)] dx= 7, then the valu...

    Text Solution

    |

  10. The value of the integral Sigma(r=1)^(n) int(0)^(1) f(r-1 +x) dx is

    Text Solution

    |

  11. The value of int(0)^(100) e^(x- [x])dx is

    Text Solution

    |

  12. If f(x) is a function satisfying f((1)/(x)) + x^(2) f(x) =0 for all no...

    Text Solution

    |

  13. If 2f(x) + 3f((1)/(x))= (1)/(x)-2, x ne 0 then int(1)^(2) f(x)dx=

    Text Solution

    |

  14. The value of the integral int(0)^(oo) (x log x)/((1+x^(2))^(2)) dx is

    Text Solution

    |

  15. int(0)^(1) "tan"^(-1) (2x-1)/({1+x-x^(2)})dx=

    Text Solution

    |

  16. The value of int(1//e)^(tan x) (t)/(1+ t^(2)) dt+ int(1//e)^(cot x) (1...

    Text Solution

    |

  17. int(0)^(pi) sin^(5) ((x)/(2))dx equals

    Text Solution

    |

  18. If int(0)^(pi//2) cos^(m) x sin^(m) x dx= lamda int(0)^(pi//2) sin^(m)...

    Text Solution

    |

  19. The value of int(1)^(e^(37)) (pi sin (pi ln x))/(x) dx is

    Text Solution

    |

  20. If int(-2)^(5) f(x) dx= 7.5^(3)- 7(-2)^(3) then f(x) is equal to

    Text Solution

    |