Home
Class 12
MATHS
The value of int(a)^(a+pi//2) (sin^(4) x...

The value of `int_(a)^(a+pi//2) (sin^(4) x + cos^(4) x)dx` is

A

independent of a

B

`a(pi//2)^(2)`

C

`(3pi)/(8)`

D

`(3)/(8)pi a^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_{a}^{a+\frac{\pi}{2}} (\sin^4 x + \cos^4 x) \, dx \), we can follow these steps: ### Step 1: Simplify the integrand We can use the identity \( \sin^4 x + \cos^4 x \) to simplify the expression. We know that: \[ \sin^4 x + \cos^4 x = (\sin^2 x + \cos^2 x)^2 - 2\sin^2 x \cos^2 x \] Since \( \sin^2 x + \cos^2 x = 1 \), we have: \[ \sin^4 x + \cos^4 x = 1 - 2\sin^2 x \cos^2 x \] Using the double angle identity, \( \sin^2 x \cos^2 x = \frac{1}{4} \sin^2(2x) \), we can rewrite it as: \[ \sin^4 x + \cos^4 x = 1 - \frac{1}{2} \sin^2(2x) \] ### Step 2: Set up the integral Now we can rewrite the integral: \[ \int_{a}^{a+\frac{\pi}{2}} (\sin^4 x + \cos^4 x) \, dx = \int_{a}^{a+\frac{\pi}{2}} \left(1 - \frac{1}{2} \sin^2(2x)\right) \, dx \] ### Step 3: Split the integral We can split the integral into two parts: \[ \int_{a}^{a+\frac{\pi}{2}} 1 \, dx - \frac{1}{2} \int_{a}^{a+\frac{\pi}{2}} \sin^2(2x) \, dx \] ### Step 4: Calculate the first integral The first integral is straightforward: \[ \int_{a}^{a+\frac{\pi}{2}} 1 \, dx = \left[x\right]_{a}^{a+\frac{\pi}{2}} = \left(a + \frac{\pi}{2}\right) - a = \frac{\pi}{2} \] ### Step 5: Calculate the second integral For the second integral, we can use the identity: \[ \sin^2(2x) = \frac{1 - \cos(4x)}{2} \] Thus, \[ \int \sin^2(2x) \, dx = \int \frac{1 - \cos(4x)}{2} \, dx = \frac{1}{2} \left(x - \frac{1}{4} \sin(4x)\right) + C \] Now, we evaluate: \[ \int_{a}^{a+\frac{\pi}{2}} \sin^2(2x) \, dx = \frac{1}{2} \left[ x - \frac{1}{4} \sin(4x) \right]_{a}^{a+\frac{\pi}{2}} \] Calculating this gives: \[ = \frac{1}{2} \left[ \left(a + \frac{\pi}{2}\right) - \frac{1}{4} \sin(4(a + \frac{\pi}{2})) - a + \frac{1}{4} \sin(4a) \right] \] Since \( \sin(4(a + \frac{\pi}{2})) = -\cos(4a) \), we have: \[ = \frac{1}{2} \left[ \frac{\pi}{2} + \frac{1}{4} \cos(4a) - \frac{1}{4} \sin(4a) \right] \] ### Step 6: Combine results Now we combine our results: \[ \int_{a}^{a+\frac{\pi}{2}} (\sin^4 x + \cos^4 x) \, dx = \frac{\pi}{2} - \frac{1}{2} \cdot \frac{1}{2} \left[ \frac{\pi}{2} + \frac{1}{4} \cos(4a) - \frac{1}{4} \sin(4a) \right] \] This simplifies to: \[ = \frac{\pi}{2} - \frac{1}{4} \left[ \frac{\pi}{2} + \frac{1}{4} \cos(4a) - \frac{1}{4} \sin(4a) \right] \] ### Final Result After simplifying, we arrive at the final value of the integral.
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ML KHANNA|Exercise ProblemSet (1) True and false|1 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise ProblemSet (2) (Multiple Choice Questions)|47 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Miscellaneous Questions (Assertion/Reason)|1 Videos
  • CORRELATION AND REGRESSION

    ML KHANNA|Exercise SELF ASSESSMENT TEST |10 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Self Assessment Test |19 Videos

Similar Questions

Explore conceptually related problems

The value of int_(0)^((pi)/(2))(sin^(4)x+cos^(4)x)dx is

The value of int_(0)^(pi//2) (sin^(3)x cos x)/(sin^(4)x+ cos^(4)x )dx is

int_(0)^(pi//4)(sin 2 x)/(sin^(4) x + cos^(4) x ) dx =

int_(pi)^((3pi)/2)(sin^(4)x+cos^(4)x)dx

int_(0)^( pi/2)(sin^(4)x)/(sin^(4)x+cos^(4)x)dx

The value of int_0^(pi//2) log ((4+3 sin x)/(4+3 cos x)) dx is:

The value of int_(0)^(2 pi)|cos x-sin x|dx is

If int_(0)^((pi)/(2))(dx)/(1+sin x+cos x)=In2, then the value of int_(0)^((pi)/(2))(sin x)/(1+sin x+cos x)dx is equal to:

ML KHANNA-DEFINITE INTEGRAL-ProblemSet (1) (Multiple Choice Questions)
  1. I(0)= int(0)^(n pi) f(|cos x|) dx and I(2)= int(0)^(5pi) f |cos x|dx, ...

    Text Solution

    |

  2. If I(1)= int(0)^(3pi) f (cos^(2) x)dx and I(2)= int(0)^(pi) f (cos^(2)...

    Text Solution

    |

  3. The value of int(a)^(a+pi//2) (sin^(4) x + cos^(4) x)dx is

    Text Solution

    |

  4. If for every integer n, int(n)^(n+1) f(x) dx= n^(2), then the value of...

    Text Solution

    |

  5. If int(-2)^(3) f (x) dx= 5 and int(1)^(3) [2-f(x)] dx=6, then int(-2)^...

    Text Solution

    |

  6. If int(-1)^(4) f(x) dx= 4 and int(2)^(4) [3-f(x)] dx= 7, then the valu...

    Text Solution

    |

  7. The value of the integral Sigma(r=1)^(n) int(0)^(1) f(r-1 +x) dx is

    Text Solution

    |

  8. The value of int(0)^(100) e^(x- [x])dx is

    Text Solution

    |

  9. If f(x) is a function satisfying f((1)/(x)) + x^(2) f(x) =0 for all no...

    Text Solution

    |

  10. If 2f(x) + 3f((1)/(x))= (1)/(x)-2, x ne 0 then int(1)^(2) f(x)dx=

    Text Solution

    |

  11. The value of the integral int(0)^(oo) (x log x)/((1+x^(2))^(2)) dx is

    Text Solution

    |

  12. int(0)^(1) "tan"^(-1) (2x-1)/({1+x-x^(2)})dx=

    Text Solution

    |

  13. The value of int(1//e)^(tan x) (t)/(1+ t^(2)) dt+ int(1//e)^(cot x) (1...

    Text Solution

    |

  14. int(0)^(pi) sin^(5) ((x)/(2))dx equals

    Text Solution

    |

  15. If int(0)^(pi//2) cos^(m) x sin^(m) x dx= lamda int(0)^(pi//2) sin^(m)...

    Text Solution

    |

  16. The value of int(1)^(e^(37)) (pi sin (pi ln x))/(x) dx is

    Text Solution

    |

  17. If int(-2)^(5) f(x) dx= 7.5^(3)- 7(-2)^(3) then f(x) is equal to

    Text Solution

    |

  18. Let (d)/(dx) F (x) = (e^(sin x))/(x), x gt 0. If int(1)^(4) (2xe^(sin ...

    Text Solution

    |

  19. Let (d)/(dx)F (x)= (e^(sin x))/(x), x gt 0. If int(1)^(4) (3x^2)/(x^3)...

    Text Solution

    |

  20. (1)/(c ) int(a c)^(bc) f((x)/(c ))dx=

    Text Solution

    |