Home
Class 12
MATHS
If for every integer n, int(n)^(n+1) f(x...

If for every integer `n, int_(n)^(n+1) f(x) dx= n^(2)`, then the value of `int_(-2)^(4) f(x) dx` is

A

16

B

14

C

19

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the integral \( \int_{-2}^{4} f(x) \, dx \) given that for every integer \( n \), \[ \int_{n}^{n+1} f(x) \, dx = n^2. \] ### Step-by-Step Solution: 1. **Break Down the Integral**: We can break the integral \( \int_{-2}^{4} f(x) \, dx \) into smaller intervals: \[ \int_{-2}^{4} f(x) \, dx = \int_{-2}^{-1} f(x) \, dx + \int_{-1}^{0} f(x) \, dx + \int_{0}^{1} f(x) \, dx + \int_{1}^{2} f(x) \, dx + \int_{2}^{3} f(x) \, dx + \int_{3}^{4} f(x) \, dx. \] 2. **Apply the Given Condition**: According to the given condition, we can evaluate each of these integrals: - For \( n = -2 \): \[ \int_{-2}^{-1} f(x) \, dx = (-2)^2 = 4. \] - For \( n = -1 \): \[ \int_{-1}^{0} f(x) \, dx = (-1)^2 = 1. \] - For \( n = 0 \): \[ \int_{0}^{1} f(x) \, dx = 0^2 = 0. \] - For \( n = 1 \): \[ \int_{1}^{2} f(x) \, dx = 1^2 = 1. \] - For \( n = 2 \): \[ \int_{2}^{3} f(x) \, dx = 2^2 = 4. \] - For \( n = 3 \): \[ \int_{3}^{4} f(x) \, dx = 3^2 = 9. \] 3. **Sum the Results**: Now, we sum all the evaluated integrals: \[ \int_{-2}^{4} f(x) \, dx = 4 + 1 + 0 + 1 + 4 + 9. \] 4. **Calculate the Total**: Adding these values together: \[ 4 + 1 = 5, \] \[ 5 + 0 = 5, \] \[ 5 + 1 = 6, \] \[ 6 + 4 = 10, \] \[ 10 + 9 = 19. \] Thus, the value of \( \int_{-2}^{4} f(x) \, dx \) is \( 19 \). ### Final Answer: \[ \int_{-2}^{4} f(x) \, dx = 19. \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ML KHANNA|Exercise ProblemSet (1) True and false|1 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise ProblemSet (2) (Multiple Choice Questions)|47 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Miscellaneous Questions (Assertion/Reason)|1 Videos
  • CORRELATION AND REGRESSION

    ML KHANNA|Exercise SELF ASSESSMENT TEST |10 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Self Assessment Test |19 Videos

Similar Questions

Explore conceptually related problems

For every integer n, int_(n)^(n+1)f(x)dx=n^(2) , then the value of int_(0)^(5)f(x)dx=

Suppose for every integer n, .int_(n)^(n+1) f(x)dx = n^(2) . The value of int_(-2)^(4) f(x)dx is :

The value of int[f(x)]^(n)f'(x)dx=

If int_(n)^(n+1)f(x)dx = n^(2) , where n is an integer, then int_(-2)^(4)f(x)dx=

Let f(x) be a continuous function such that int_(n)^(n+1) f(x) dx=n^(3) , ninZ . Then the value of the integeral int_(-3)^(3) f(x) dx, is

A periodic function with period 1 is integrable over any finite interval.Also,for two real numbers a,b and two unequal non-zero positive integers m and nint_(a)^(a+n)f(x)dx=int_(b)^(b+m)f(x) calculate the value of int_(m)^(n)f(x)dx

int_(n)^(n+1)f(x)dx=n^(2)+n then int_(-1)^(1)f(x)dx=

Let f(x) be a contiuous function such a int_(n)^(n+1)f(x)dx=n^(3),n in Z. Then,the value of the intergral int_(-3)^(3)f(x)dx(A)9(B)-27(C)-9(D) none of these

Evaluate: int_(-1)^(4)f(x)dx=4 and int_(2)^(4)(3-f(x))dx=7 then find the value of int_(2)^(-1)f(x)dx

ML KHANNA-DEFINITE INTEGRAL-ProblemSet (1) (Multiple Choice Questions)
  1. If I(1)= int(0)^(3pi) f (cos^(2) x)dx and I(2)= int(0)^(pi) f (cos^(2)...

    Text Solution

    |

  2. The value of int(a)^(a+pi//2) (sin^(4) x + cos^(4) x)dx is

    Text Solution

    |

  3. If for every integer n, int(n)^(n+1) f(x) dx= n^(2), then the value of...

    Text Solution

    |

  4. If int(-2)^(3) f (x) dx= 5 and int(1)^(3) [2-f(x)] dx=6, then int(-2)^...

    Text Solution

    |

  5. If int(-1)^(4) f(x) dx= 4 and int(2)^(4) [3-f(x)] dx= 7, then the valu...

    Text Solution

    |

  6. The value of the integral Sigma(r=1)^(n) int(0)^(1) f(r-1 +x) dx is

    Text Solution

    |

  7. The value of int(0)^(100) e^(x- [x])dx is

    Text Solution

    |

  8. If f(x) is a function satisfying f((1)/(x)) + x^(2) f(x) =0 for all no...

    Text Solution

    |

  9. If 2f(x) + 3f((1)/(x))= (1)/(x)-2, x ne 0 then int(1)^(2) f(x)dx=

    Text Solution

    |

  10. The value of the integral int(0)^(oo) (x log x)/((1+x^(2))^(2)) dx is

    Text Solution

    |

  11. int(0)^(1) "tan"^(-1) (2x-1)/({1+x-x^(2)})dx=

    Text Solution

    |

  12. The value of int(1//e)^(tan x) (t)/(1+ t^(2)) dt+ int(1//e)^(cot x) (1...

    Text Solution

    |

  13. int(0)^(pi) sin^(5) ((x)/(2))dx equals

    Text Solution

    |

  14. If int(0)^(pi//2) cos^(m) x sin^(m) x dx= lamda int(0)^(pi//2) sin^(m)...

    Text Solution

    |

  15. The value of int(1)^(e^(37)) (pi sin (pi ln x))/(x) dx is

    Text Solution

    |

  16. If int(-2)^(5) f(x) dx= 7.5^(3)- 7(-2)^(3) then f(x) is equal to

    Text Solution

    |

  17. Let (d)/(dx) F (x) = (e^(sin x))/(x), x gt 0. If int(1)^(4) (2xe^(sin ...

    Text Solution

    |

  18. Let (d)/(dx)F (x)= (e^(sin x))/(x), x gt 0. If int(1)^(4) (3x^2)/(x^3)...

    Text Solution

    |

  19. (1)/(c ) int(a c)^(bc) f((x)/(c ))dx=

    Text Solution

    |

  20. If A= int(0)^(1) (dx)/(sqrt(1+x^(4))) and B= (pi)/(4) then

    Text Solution

    |