Home
Class 12
MATHS
The value of the integral Sigma(r=1)^(n)...

The value of the integral `Sigma_(r=1)^(n) int_(0)^(1) f(r-1 +x) dx` is

A

`int_(0)^(1) f(x) dx`

B

`int_(0)^(2) f(x) dx`

C

`int_(0)^(n) f(x) dx`

D

`n int_(0)^(1) f(x) dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \Sigma_{r=1}^{n} \int_{0}^{1} f(r-1+x) \, dx \), we will follow these steps: ### Step 1: Rewrite the summation and integral We start with the expression: \[ \Sigma_{r=1}^{n} \int_{0}^{1} f(r-1+x) \, dx \] This means we need to evaluate the integral for each integer value of \( r \) from 1 to \( n \). ### Step 2: Change of variable in the integral For each \( r \), we can perform a change of variable in the integral. Let: \[ t = r - 1 + x \implies x = t - (r - 1) \implies dx = dt \] When \( x = 0 \), \( t = r - 1 \) and when \( x = 1 \), \( t = r \). Thus, the integral becomes: \[ \int_{0}^{1} f(r-1+x) \, dx = \int_{r-1}^{r} f(t) \, dt \] ### Step 3: Substitute back into the summation Now substituting this back into the summation: \[ \Sigma_{r=1}^{n} \int_{r-1}^{r} f(t) \, dt \] ### Step 4: Combine the integrals Now we can combine the integrals: \[ \int_{0}^{1} f(t) \, dt + \int_{1}^{2} f(t) \, dt + \int_{2}^{3} f(t) \, dt + \ldots + \int_{n-1}^{n} f(t) \, dt \] This can be written as: \[ \int_{0}^{n} f(t) \, dt \] ### Final Result Thus, the value of the integral is: \[ \int_{0}^{n} f(t) \, dt \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ML KHANNA|Exercise ProblemSet (1) True and false|1 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise ProblemSet (2) (Multiple Choice Questions)|47 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Miscellaneous Questions (Assertion/Reason)|1 Videos
  • CORRELATION AND REGRESSION

    ML KHANNA|Exercise SELF ASSESSMENT TEST |10 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Self Assessment Test |19 Videos

Similar Questions

Explore conceptually related problems

The value of integral sum _(k=1)^(n) int _(0)^(1) f(k - 1+x) dx is

The value of the integral int_0^1 x(1-x)^n dx=

The value of the integral int_(0)^(1) x(1-x)^(n)dx , is

For any n in R^(+) , the value of the integral int_(0)^(n[x]) (x-[x])dx is

The value of the integral l = int_(0)^(1) x(1-x)^(n) dx is

If f(x) is continuous for all real values of x, then sum_(r=1)^(n)int_(0)^(1)f(r-1+x)dx is equal to (a)int_(0)^(n)f(x)dx(b)int_(0)^(1)f(x)dx(c)int_(0)^(1)f(x)dx(d)(n-1)int_(0)^(1)f(x)dx

The value of the integral int_(0)^(oo)(1)/(1+x^(4))dx is

If f(0)=1,f(2)=3,f'(2)=5 ,then the value of the definite integral int_(0)^(1)xf''(2x)dx is

ML KHANNA-DEFINITE INTEGRAL-ProblemSet (1) (Multiple Choice Questions)
  1. If int(-2)^(3) f (x) dx= 5 and int(1)^(3) [2-f(x)] dx=6, then int(-2)^...

    Text Solution

    |

  2. If int(-1)^(4) f(x) dx= 4 and int(2)^(4) [3-f(x)] dx= 7, then the valu...

    Text Solution

    |

  3. The value of the integral Sigma(r=1)^(n) int(0)^(1) f(r-1 +x) dx is

    Text Solution

    |

  4. The value of int(0)^(100) e^(x- [x])dx is

    Text Solution

    |

  5. If f(x) is a function satisfying f((1)/(x)) + x^(2) f(x) =0 for all no...

    Text Solution

    |

  6. If 2f(x) + 3f((1)/(x))= (1)/(x)-2, x ne 0 then int(1)^(2) f(x)dx=

    Text Solution

    |

  7. The value of the integral int(0)^(oo) (x log x)/((1+x^(2))^(2)) dx is

    Text Solution

    |

  8. int(0)^(1) "tan"^(-1) (2x-1)/({1+x-x^(2)})dx=

    Text Solution

    |

  9. The value of int(1//e)^(tan x) (t)/(1+ t^(2)) dt+ int(1//e)^(cot x) (1...

    Text Solution

    |

  10. int(0)^(pi) sin^(5) ((x)/(2))dx equals

    Text Solution

    |

  11. If int(0)^(pi//2) cos^(m) x sin^(m) x dx= lamda int(0)^(pi//2) sin^(m)...

    Text Solution

    |

  12. The value of int(1)^(e^(37)) (pi sin (pi ln x))/(x) dx is

    Text Solution

    |

  13. If int(-2)^(5) f(x) dx= 7.5^(3)- 7(-2)^(3) then f(x) is equal to

    Text Solution

    |

  14. Let (d)/(dx) F (x) = (e^(sin x))/(x), x gt 0. If int(1)^(4) (2xe^(sin ...

    Text Solution

    |

  15. Let (d)/(dx)F (x)= (e^(sin x))/(x), x gt 0. If int(1)^(4) (3x^2)/(x^3)...

    Text Solution

    |

  16. (1)/(c ) int(a c)^(bc) f((x)/(c ))dx=

    Text Solution

    |

  17. If A= int(0)^(1) (dx)/(sqrt(1+x^(4))) and B= (pi)/(4) then

    Text Solution

    |

  18. If g(x)=int(0)^(x)cos^(4) t dt , then g(x+pi) equals

    Text Solution

    |

  19. int(-a)^(a) f (x) dx is equal to

    Text Solution

    |

  20. int(1//2)^(2) |log(10) x| dx=

    Text Solution

    |