Home
Class 12
MATHS
If f(x) is a function satisfying f((1)/(...

If f(x) is a function satisfying `f((1)/(x)) + x^(2) f(x) =0` for all non-zero x, then `int_(sin. theta)^(cosec theta) f(x)` dx equals

A

`sin theta + cosec theta`

B

`sin^(2) theta`

C

`cosec^(2) theta`

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given functional equation for \( f(x) \): \[ f\left(\frac{1}{x}\right) + x^2 f(x) = 0 \] ### Step 1: Express \( f\left(\frac{1}{x}\right) \) in terms of \( f(x) \) From the equation, we can isolate \( f\left(\frac{1}{x}\right) \): \[ f\left(\frac{1}{x}\right) = -x^2 f(x) \] ### Step 2: Substitute \( x \) with \( \frac{1}{x} \) Next, we substitute \( x \) with \( \frac{1}{x} \) in the original equation: \[ f(x) + \left(\frac{1}{x}\right)^2 f\left(\frac{1}{x}\right) = 0 \] This simplifies to: \[ f(x) + \frac{1}{x^2} f\left(\frac{1}{x}\right) = 0 \] ### Step 3: Substitute \( f\left(\frac{1}{x}\right) \) Now, we can substitute our expression for \( f\left(\frac{1}{x}\right) \) into this equation: \[ f(x) + \frac{1}{x^2} \left(-x^2 f(x)\right) = 0 \] This simplifies to: \[ f(x) - f(x) = 0 \] This is always true, which confirms that our functional equation is consistent. ### Step 4: Set up the integral We need to evaluate the integral: \[ I = \int_{\sin \theta}^{\csc \theta} f(x) \, dx \] ### Step 5: Change of variable Using the substitution \( x = \frac{1}{t} \), we have \( dx = -\frac{1}{t^2} dt \). The limits change as follows: - When \( x = \sin \theta \), \( t = \csc \theta \) - When \( x = \csc \theta \), \( t = \sin \theta \) Thus, we can rewrite the integral as: \[ I = \int_{\csc \theta}^{\sin \theta} f\left(\frac{1}{t}\right) \left(-\frac{1}{t^2}\right) dt \] This becomes: \[ I = \int_{\sin \theta}^{\csc \theta} -\frac{1}{t^2} f\left(\frac{1}{t}\right) dt \] ### Step 6: Substitute \( f\left(\frac{1}{t}\right) \) Using our earlier result \( f\left(\frac{1}{t}\right) = -t^2 f(t) \): \[ I = \int_{\sin \theta}^{\csc \theta} -\frac{1}{t^2} \left(-t^2 f(t)\right) dt \] This simplifies to: \[ I = \int_{\sin \theta}^{\csc \theta} f(t) dt \] ### Step 7: Relate the two integrals Now we have: \[ I = \int_{\sin \theta}^{\csc \theta} f(x) \, dx \] From our previous steps, we also have: \[ I = -I \] ### Step 8: Solve for \( I \) This implies: \[ 2I = 0 \implies I = 0 \] ### Conclusion Thus, the value of the integral is: \[ \int_{\sin \theta}^{\csc \theta} f(x) \, dx = 0 \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ML KHANNA|Exercise ProblemSet (1) True and false|1 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise ProblemSet (2) (Multiple Choice Questions)|47 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Miscellaneous Questions (Assertion/Reason)|1 Videos
  • CORRELATION AND REGRESSION

    ML KHANNA|Exercise SELF ASSESSMENT TEST |10 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Self Assessment Test |19 Videos

Similar Questions

Explore conceptually related problems

If f(x) is a function satisfying f((1)/(x))+x^(2)f(x)=0 for all nonzero x, then evaluate int_(sin theta)f(x)dx

If f(x) is a function satisfying f(1/x)+x^(2)f(x)=0 for all non zero x then int_(cos theta)^(sec theta)f(x)dx=

If f(x) rArr int_(sin theta)^("cosec" theta) f(x)dx equals

If f(x) and g(x) are continuous functions satisfying f(x) = f(a-x) and g(x) + g(a-x) = 2 , then what is int_(0)^(a) f(x) g(x)dx equal to ?

If a continuous function f satisfies int_(0)^(f(x))t^(3)dt=x^(2)(1+x) for all x>=0 then f(2)

If f(x) is a function satisfying f(x+a)+f(x)=0 for all x in R and positive constant a such that int_(b)^(c+b)f(x)dx is independent of b, then find the least positive value of c.

If f(x) is a continuous function satisfying f(x)f(1/x) =f(x)+f(1/x) and f(1) gt 0 then lim_(x to 1) f(x) is equal to

Let f(x) be a function defined on R satisfying f(x)=f(1x) for all x in R. Then int_(-(1)/(2))^((1)/(2))f(x+(1)/(2))sin xdx equals

f(theta)=int_0^1 (x+sin theta)^2 dx

ML KHANNA-DEFINITE INTEGRAL-ProblemSet (1) (Multiple Choice Questions)
  1. If int(-2)^(3) f (x) dx= 5 and int(1)^(3) [2-f(x)] dx=6, then int(-2)^...

    Text Solution

    |

  2. If int(-1)^(4) f(x) dx= 4 and int(2)^(4) [3-f(x)] dx= 7, then the valu...

    Text Solution

    |

  3. The value of the integral Sigma(r=1)^(n) int(0)^(1) f(r-1 +x) dx is

    Text Solution

    |

  4. The value of int(0)^(100) e^(x- [x])dx is

    Text Solution

    |

  5. If f(x) is a function satisfying f((1)/(x)) + x^(2) f(x) =0 for all no...

    Text Solution

    |

  6. If 2f(x) + 3f((1)/(x))= (1)/(x)-2, x ne 0 then int(1)^(2) f(x)dx=

    Text Solution

    |

  7. The value of the integral int(0)^(oo) (x log x)/((1+x^(2))^(2)) dx is

    Text Solution

    |

  8. int(0)^(1) "tan"^(-1) (2x-1)/({1+x-x^(2)})dx=

    Text Solution

    |

  9. The value of int(1//e)^(tan x) (t)/(1+ t^(2)) dt+ int(1//e)^(cot x) (1...

    Text Solution

    |

  10. int(0)^(pi) sin^(5) ((x)/(2))dx equals

    Text Solution

    |

  11. If int(0)^(pi//2) cos^(m) x sin^(m) x dx= lamda int(0)^(pi//2) sin^(m)...

    Text Solution

    |

  12. The value of int(1)^(e^(37)) (pi sin (pi ln x))/(x) dx is

    Text Solution

    |

  13. If int(-2)^(5) f(x) dx= 7.5^(3)- 7(-2)^(3) then f(x) is equal to

    Text Solution

    |

  14. Let (d)/(dx) F (x) = (e^(sin x))/(x), x gt 0. If int(1)^(4) (2xe^(sin ...

    Text Solution

    |

  15. Let (d)/(dx)F (x)= (e^(sin x))/(x), x gt 0. If int(1)^(4) (3x^2)/(x^3)...

    Text Solution

    |

  16. (1)/(c ) int(a c)^(bc) f((x)/(c ))dx=

    Text Solution

    |

  17. If A= int(0)^(1) (dx)/(sqrt(1+x^(4))) and B= (pi)/(4) then

    Text Solution

    |

  18. If g(x)=int(0)^(x)cos^(4) t dt , then g(x+pi) equals

    Text Solution

    |

  19. int(-a)^(a) f (x) dx is equal to

    Text Solution

    |

  20. int(1//2)^(2) |log(10) x| dx=

    Text Solution

    |